冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf

冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf

ID:51830198

大小:1.41 MB

页数:36页

时间:2020-03-16

上传者:小钢
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第1页
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第2页
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第3页
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第4页
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第5页
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第6页
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第7页
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第8页
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第9页
冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf_第10页
资源描述:

《冠状病毒Coronavirusl论文-2019 Diseases of Swine __ Coronaviruses.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

48831CoronavirusesLindaJ.Saif,QiuhongWang,AnastasiaN.Vlasova,KwonilJung,andShaoboXiaoOverviewdistinct,andtheybelongtotheBetacoronavirusandDeltacoronavirusgenera,respectively.TogetherwithThefamilyCoronaviridaewithintheorderNidoviralesbovine,humanOC43,equine,andcaninerespiratoryconsistsoftwosubfamilies:(1)CoronavirinaecomprisingCoVs,pHEVisamemberoftheBetacoronavirus1spe-thegeneraAlphacoronavirus,Betacoronavirus,Gammac-cies.PDCoVismostcloselyrelatedtoothermammalianoronavirus,andDeltacoronavirusand(2)Torovirinaecom-deltacoronavirusesfromAsianleopardcatsandChineseprisingthegeneraTorovirusandBafinivirusandanferretbadgers(Maet al.2015).ForeachswineCoV,onlyunassignedgenus.asingleserotypeisrecognized.Fiveswinecoronaviruses(CoVs)havebeenidentified:CoVsareenvelopedandpleomorphic,withanoveralltransmissiblegastroenteritisvirus(TGEV)firstdescribeddiameterof60–160nmasviewedbynegativestainingin1946;porcinerespiratorycoronavirus(PRCV),aspikeelectronmicroscopy(EM)(Figure 31.2).Mosthavea(S)genedeletionmutantofTGEVisolatedin1984;por-singlelayerofclub‐shapedspikes(Sprotein)12–25nmcineepidemicdiarrheavirus(PEDV)isolatedin1977;inlength,butpHEVandsomeotherbetacoronavirusesporcinehemagglutinatingencephalomyelitisvirushaveasecondshorterlayerofsurfacespikes,thehemag-(pHEV)isolatedin1962;andporcinedeltacoronavirusglutinin‐esterase(HE)protein.(PDCoV)detectedin2012.Inaddition,aTGEV/PEDVrecombinantvirus(TGEVbackbonebutwithPEDVGenomicorganizationand geneexpression:spikegene)hasbeenidentifiedinswineinEuropeTGEVprototype(Akimkinet al.2016;Belshamet al.2016;Boniottiet al.2016),andabat‐HKU2‐likealphacoronavirushasbeenSwineCoVscontainonelarge,polyadenylated,single‐identifiedinswineinChina(Gonget al.2017;Panet al.stranded,genomicRNA(25–30kb)ofpositive‐sense2017;Zhouet al.2018).Inpigs,CoVsandtorovirusespolarity.Thegenomeorganization,replicationstrategy,(ToVs)affectavarietyoforgans,includingthegastroin-andexpressionofviralproteinsaresimilartothoseoftestinalandrespiratorytracts,theperipheralandcentralotherhumanandanimalCoVs(EnjuanesandVandernervoussystems(CNS),andthemammaryglands.MostZeijst1995;Gonzalezet al.2003;Laudeet al.1993).TheToVsandPRCVinducemainlysubclinicalinfectionsincompletegenomesofthePurdueandMillerstrainsofpigs,whereasTGEV,PEDV,PDCoV,andpHEVinfec-TGEVare28,546–28,580nucleotide(nt)longandsharetionscanresultinfatalentericornervousdiseases.96%overallidentity(Penzeset al.2001;Zhanget al.SwineCoVscomprisethreedistinctgenera –2007).MostCoVshavebuoyantdensitiesinsucroseofAlphacoronavirus,Betacoronavirus,andDeltacoronavirus1.18–1.20g/mL.Thephospholipidsandglycolipids(Figure 31.1) – andsharereplicationstrategiescommonincorporatedintothevirusenvelopearederivedfromtoCoronaviridae.TGEVandPRCVbelongtothethehostcell,andthus,theenvelopecompositionishostAlphacoronavirus1speciesthatalsocontainscloselycelldependent(EnjuanesandVanderZeijst1995).relatedCoVsofdomesticcatsanddogs.PEDVandtwoMostCoVscontainfourstructuralproteins:alargehumanCoVs(229EandNL63)areseparatespeciesinthesurfaceglycoprotein(spikeorSproteinvisibleasthesamegenusAlphacoronavirus.Thenewlyidentifiedbat‐corona;Figure 31.2),asmallmembraneprotein(E),anHKU2‐likeswineentericalphacoronavirusalsobelongsintegralmembraneglycoprotein(M),andanucleocapsidtothegenusAlphacoronavirus,butitstaxonomicnameprotein(N).However,pHEValsocontainsanHEproteinhasnotbeendefined.pHEVandPDCoVaregenetically(deGrootet al.2008).DiseasesofSwine,EleventhEdition.EditedbyJeffreyJ.Zimmerman,LockeA.Karriker,AlejandroRamirez,KentJ.Schwartz,GregoryW.Stevenson,andJianqiangZhang.©2019JohnWiley&Sons,Inc.Published2019byJohnWiley&Sons,Inc.ChapterNo.:1TitleName:c31.inddComp.by:Date:18Mar2019Time:06:57:37AMStage:WorkFlow:PageNumber:488 31Coronaviruses489100USA/Colorado/2013100USA/Iowa/18984/2013100CHN/AH2012/2012100CHN/ZMDZY/2011Non-SINDELEmergingGER/L00719/2014PEDV65100USA/OH851/2014100KOR/KNU-1406-1/2014SINDEL100KOR/virulentDR13/1999AlphaCoV100ClassicalBEL/CV777/1977100BtCoV/512/2005SeCoV/ITA/213306/2009PRCVISU-1100TGEVvirulentPurdue100100100TGEVMillerM6TGEV100TGEVH16THA/S5011/201577CHN/HKU15-44/2009100CHN/AH/200499CHN/HKU15-155/2010PDCoVDeltaCoV100CHN/HB/201494USA/OH1987/2014100KOR/KNU14-04/2014SwineHEV/VW572BetaCoVAvianIBV/Mass41VaccineGammaCoV0.05Figure31.1Phylogenetictreeofcoronaviruses.ThecompletegenomesofTGEV,PEDV,andPDCoVstrains,closelyrelatedPRCVandabatalphacoronavirus,aporcineHEVstrain,andanavianIBVstrainwereselected.MultiplesequencealignmentswereperformedusingClusterW,andaneighbor‐joiningphylogenetictreesupportedwithabootstraptestof1000replicateswasconstructedusingMEGA6.0software.Thenumberoneachbranchindicatesthebootstrapvalue.Thescalerepresentsthenucleotidesubstitutionspersite.Color‐shadedareasdenotedifferentswinevirusclusters.TheNprotein(47kDa)interactswithviralRNAtoproteinundergoconformationalchangesimportantforformahelicalribonucleoproteincomplex.Thisstruc-fusion(Maet al.2005).EntryofTGEVintothecellisture,inassociationwithMprotein,formsaninternallikelyassociatedwithcholesterol‐richmembranemicro-icosahedralcoreinTGEV.The29–36kDaMglycopro-domains(Renet al.2008),sinceexogenouscholesterolteinisembeddedintheviralenvelopeby3–4mem-rescuedvirusinfectivity.brane‐spanningregions.InTGEV,thehydrophilicN‐EpitopemappingoftheSglycoproteinofTGEVterminuswithasingleaccessibleglycosylationsiteisrevealedfourantigenicsites(A,B,C,D)(Figure 31.3).responsibleforinterferon(IFN)induction(CharleyandSiteA–B,theconservedimmunodominantepitope,isLaude1988).EpitopesonprotrudingN‐andC‐terminalrecognizedstronglybyneutralizingMAbs(Correaet al.endsoftheMproteinofTGEVbindcomplement‐1990;DelmasandLaude1990;Simkinset al.1992,1993),dependentneutralizingmonoclonalantibodies(MAbs)althoughothersites(D,C)canalsoinducevirus‐neutral-(Laudeet al.1992;Woodset al.1988).izing(VN)antibodies(DelmasandLaude1990).TheSTheTGEVSglycoprotein(220kDa)occursastrimerproteinmutationsinattenuatedTGEVstrainsorthecomplexes(DelmasandLaude1990)andfunctionsinnaturalTGEVdeletionmutantPRCVincludeaserine/virusneutralization(complementindependent),virus‐alaninemutationataminoacid(aa)585positionassoci-cellattachment,membranefusion,andhemagglutina-atedwithinductionofVNantibodies,aswellasreceptortion.ThelargedeletionintheSgeneofPRCVresultsin(aminopeptidaseN)binding(Zhanget al.2007).asmallerSprotein(170–190kDa)(Figure 31.3).DuringPorcineaminopeptidaseN(pAPN)hasbeenidentifiedfusionofTGEVwithhostcellmembranes,twohighlyastheTGEVcellreceptor(Delmaset al.1992).Therecep-conservedheptadrepeatregions(HR1andHR2)oftheStor‐bindingandmajorneutralizingsite(siteA)ontheS 490SectionIIIViralDiseases(a)(b)(c)(d)Figure31.2Electronmicrographs.(a)ATGEVparticleshowingtypicalcoronavirusmorphology.Arrowpointstotheviruspeplomersorspikes.Bar = 100nm.(b)Typicalvirus–antibodyaggregatesobservedbyimmunoelectronmicroscopyofTGEVandgnotobioticpiganti‐TGEVserum.Bar = 100nm.(c)Twoparticlesofemergingnon‐SINDELPEDVPC22Astrain,bar = 100nm.Source:Okaet al.(2014).ReproducedwithpermissionofElsevier.(d)APDCoVparticle,bar = 100nm.Source:Junget al.(2015b).proteinofTGEVarelocatedwithinthesamedomain(TGEVandPDCoV).Theoverallgenomeorganizationis(Figure 31.3)(Godetet al.1994).TGEVbindingtosialic5′UTR‐ORF1ab,S,ORF3,E,M,ORF6,N,ORF7‐3′UTR.acidresiduesonglycoproteinsoftargetcellswasproposedtoinitiateinfectionofintestinalenterocytes(Schwegmann‐Contrastsand comparisonsWesselset al.2002).TreatmentofTGEVwithsialidaseenhancedhemagglutinatingactivity(Nodaet al.1987;SevenCoVsarerelatedantigenicallyorbytheirgenomicSchultzeet al.1996).Thehemagglutinatingactivityresidessequences(EnjuanesandVanderZeijst1995):TGEV,intheN‐terminalregionoftheTGEVSprotein,aregionPRCV,caninecoronavirus(CCoV),felineinfectiousperi-thatismissingfromthePRCVSprotein;thus,determina-tonitisvirus(FIPV),felineentericcoronavirus(FECoV),tionofhemagglutinatingactivity(Schultzeet al.1996)PEDV,andhumanCoV229E.CoVswithinthespeciescouldpotentiallydifferentiatePRCVandTGEVstrains.Alphacoronavirus1(TGEV,PRCV,CCoV,FIPV,FECoV)TGEVandPEDVaswellasPDCoValsoencode1–2areantigenicallyrelated,basedoncross‐reactivityinVNaccessoryproteinsencodedbyopenreadingframeandimmunofluorescence(IF)testsandwithMAbsto(ORF)3(TGEVandPEDV),ORF6(PDCoV),andORF7theS,N,orMproteins,andallsharetheantigenicsubsite 31Coronaviruses491AcontheSprotein(EnjuanesandVanderZeijst1995).cross‐reactivitywiththeNproteinhasalsobeenreportedAsmembersofthesamespecies,theseviruseslikelyrep-forPEDV,FIPV,CCoV,TGEV,andaputativeminkCoVresenthostrangemutantsofanancestralvirusstrain(de(Haveet al.1992;Zhouet al.2010).Althoughnocross‐Grootet al.2008).TGEVandCCoVcouldbedistin-reactivitybetweenPEDVandTGEV‐relatedCoVswasguishedinvitrobytwo‐waycross‐neutralizationtestsinitiallyreported(EnjuanesandVanderZeijst,1995),andotherbiologicaldifferences(Reynoldset al.1980),one‐waycross‐reactivitybetweenTGEVMillerandsev-i.e.bothTGEVandCCoVgrowincaninekidneycellseralPEDVstrains(classicalCV777,emergingnon‐Sandafelinecellline,whereasTGEV,butneitherCCoVINDELandSINDELUSstrains)wasrecentlyconfirmednorFIPV,growsinswinecells.(Linet al.2015b).FortheSglycoproteinthatconfershostrangespecific-Invivobiologicaldifferencesinpathogenicityforneo-ity,the300aaresiduesattheN‐terminusarethemostnatalpigsareevidentamongTGEV,CCoV,andFIPVvariable.Inthisdomain,CCoVandFIPVaremoresimi-strains.WhereasvirulentFIPVcauseddiarrheaandlartoeachotherthantoTGEV(Wesselinget al.1994).intestinallesionssimilartothoseofvirulentTGEV,DifferentiationoftheTGEV‐relatedCoVsispossibleCCoVcausednoclinicalsignsandonlyslightvilloususingspecificMAbstotheSglycoproteinofTGEVthatatrophy.CCoVshedbyacutelyinfecteddogs,infectedrecognizeTGEVbutnotPRCV,FIPV,orCCoVstrainsbabypigs,andinducedserumVNantibodiestoCCoV(Callebautet al.1989;Laudeet al.1993;Sanchezet al.andTGEV(WoodsandWesley1992).However,baby1990;Simkinset al.1992,1993).pigsandpregnantgiltsinfectedwithFIPVdidnotInterestingly,outbreaksoffatalacutegastroenteritisproduceTGEVVNantibodies,butdiddevelopsomeassociatedwithTGEV‐relatedCCoVtypeII(CCoV‐II)immunitytoTGEVchallenge.werereportedinEuropeandogs(Decaroet al.2009;PRCVstrainshavebeencharacterizedandsequencedErlesandBrownlie2009).Theclosegeneticrelatedness(Brittonet al.1991;Costantiniet al.2004;Kimet al.(>96%aaidentity)inthekeyreplicasedomainssuggested2000b;Rasschaertet al.1990;Vaughnet al.1995;ZhangthattherecentlyemergedCCoV‐IIstrainsarehostrangeet al.2007).TwostrikingfeaturescharacterizethePRCVvariantsofTGEVthatinfectdogs(deGrootet al.2008).genome:(1)alargedeletion(621–681nt)neartheBasedontheSprotein,theCCoV‐IIbstrains(TGEV‐N‐terminusoftheSgeneproducingasmallerSproteinlike)(Decaroet al.2010)mayrepresentnovelrecombi-(Figure 31.3)and(2)avariableregionwithdeletionsthatnantvirusesofmixed(TGEV/CCoV)origin.compromiseORF3downstreamoftheSgene.TheseSeveralresearchersreportedthatthesevereacuteres-geneticchangesmayaccountforthealteredtissuetro-piratorysyndrome(SARS)CoVcross‐reactswithanti-pismofPRCV(Ballesteroset al.1997;Sanchezet al.bodiestoAlphacoronavirus1species(TGEV,PRCV,1999).AnoverallnucleotideandaasequenceidentityofCCoV,FeCoV)throughtheNprotein(Ksiazeket al.96–98%betweenTGEVandPRCVsuggeststhatPRCV2003;SunandMeng2004)andthatthiscross‐reactivityevolvedfromTGEV(Zhanget al.2007)andthatthismappedtotheN‐terminalregion(Vlasovaet al.2007).occurredonanumberofindependentoccasions.ThisdiscoveryledtouseofSARSCoV‐specificNpep-DiseaseoutbreakscausedbyswineCoVsareendemictidefragmentsinserologicassaystodetectSARSCoVorvariableinswine‐producingcountries.Nevertheless,antibodiesinanimalsera(Vlasovaet al.2007).One‐waythediseasesinducedbytheseCoVshaveresistederadicationS1domainS2domain15066557831449PRCVSNH2deletionRBDCOOH117297325379529538543TMDA....ACorreaetal.(1990)࢐DCB82210363371506718DelmasandLaude(1990)࢐DCABFigure31.3SchematicdiagramofTGEVSprotein.RBD,receptor‐bindingdomain(showninred);TMD,transmembranedomain(showninorange).AccordingtoCorreaet al.’s(1990)classification(lightblueboxes),siteAisdiscontinuousandlocatedaroundpositions17and297and538and543,siteBislocatedbetweenaminoacids1and325,andsiteDislocatedbetween379and529.TherelativeorderofsitesCandBandpartofsiteAisnotdetermined.AccordingtoDelmasandLaude’s(1990)classification(lightgrayboxes),SproteinantigenicsitesD,C,andA/Barelocatedbetweenaminoacids82and210,between363and371,andbetween506and718,respectively.Dottedredboxindicatesa227aadeletioninthePRCVSprotein.Source:AdaptedfromCorreaet al.(1990)andDelmasandLaude(1990). 492SectionIIIViralDiseasesefforts,andthevirusesmaycontinuetoevolveindomes-TGEVisstablewhenstoredfrozen,butlabileatticpigs,wildboars,andotherpotentialreservoir(bats)roomtemperatureorhigher.Infectiousviruspersistedorsecondaryhosts,suchascarnivores,viainterspeciesinliquidmanureslurryformorethan8weeksat5°Ctransmission.(41°F),2weeksat20°C(68°F),and24hoursat35°C(95°F)(Haaset al.1995).InrecentstudiesthatusedTGEVasasurrogateforSARSCoV(Casanovaet al.Transmissiblegastroenteritis2009),itremainedinfectiousinwaterandsewageforvirus and porcinerespiratoryseveraldaysat25°C(77°F)andforseveralweeksat4°C(39°F).coronavirusTGEVishighlyphotosensitive.Fecalmaterialcon-5taining1×10piginfectiousdoses(PID)wasinactivatedRelevancewithin6hourswhenexposedtosunlightortoultravio-TGEisahighlycontagiousentericviraldiseaseofswineletlight(Cartwrightet al.1965;Haelterman1962).characterizedbyvomiting,severediarrhea,andhighTGEVisinactivatedbyexposureto0.03%formalin,1%mortality(often100%)inpigletslessthan2weeksofage.Lysovet(phenolandaldehyde),0.01%beta‐propiolac-TGEwasfirstdescribedbyDoyleandHutchings(1946)tone,1mMbinaryethylenimine,sodiumhypochlorite,intheUnitedStatesandsubsequentlyreportedworld-NaOH,iodines,quaternaryammoniumcompounds,wide.AlthoughswineofallagesaresusceptibletoTGEVether,andchloroform(Brown1981;VanCottet al.orPRCVinfection,themortalityinTGEVand/orPRCV1993).TGEVfieldstrainsaretrypsinresistant,relativelyseropositiveherdsandinswineover5weeksofageisstableinpigbile,andstableatpH3(Laudeet al.1981),generallylow.allowingvirustosurviveinthestomachandsmallintes-TheappearanceandwidespreadprevalenceofPRCV,atine.However,propertiesofattenuatedandfieldstrainsnaturallyoccurringdeletionmutantofTGEV,lessenedofTGEVvary.theclinicalimpactofTGE(BrownandCartwright1986;Laudeet al.1993;Pensaertet al.1986,1993;PensaertPublichealth1989;Yaegeret al.2002).However,sporadicoutbreaksofseverediarrheainpigletscausedbyTGEVinTGEV/PigsarethemainspeciesnaturallysusceptibletoTGEVPRCVseronegativeherdsarestillreportedinNorthandPRCV.Noinfectionofhumanshasbeenreported.America,Europe,andAsia.Currently,TGEVandPEDVco‐circulateinAsia,Europe,andtheUnitedStates,andEpidemiologyrecently,pathogenicrecombinantTGEV/PEDVvariants(swineentericcoronavirus[SeCoV])wereidentifiedandOnaherdbasis,twoepidemiologicformsofTGEarecharacterizedinEurope(Akimkinet al.2016;Belshamrecognized:epidemicandendemic.Infectionswiththeet al.2016;Boniottiet al.2016).SeCoVthatcontainsTGEVdeletionmutantPRCVpresentadifferentpattern,PEDVSgeneonaTGEVbackbonereportedlycausesgreatlycomplicatingseroprevalencestudiesoftheepide-diseaseclinicallyindistinguishablefromthatcausedbymiologyofTGEV(Pensaert1989).TGEVandPEDV.ThisepidemiologicalsituationrequiresfrequentmonitoringanddevelopmentofreliabletoolsEpidemicversusendemicTGEfordifferentialdiagnosis(Kimet al.2001;Masudaet al.EpidemicTGEoccurswhenmostoftheanimalsina2016).herdareTGEV/PRCVseronegativeandsusceptible.Afterintroduction,thediseasespreadsrapidlytoswineofallages,especiallyduringwinter.Inappetence,vomit-Etiologying,ordiarrheaoccursinmostanimals.SucklingpigsTGEVantigencanbedemonstratedbyIFstainingintheshowmarkedclinicalsignsandrapidlydehydrate.cytoplasmofinfectedcells4–5hourspostinfectionMortalityisveryhighinpigsunder2–3weeksofagebut(Pensaertet al.1970).Maturationofvirusoccursinthedecreasesinolderpigs.Lactatingsowsoftendevelopcytoplasmbybuddingthroughtheendoplasmicreticu-anorexiaandagalactia,withreducedmilkproduction,lum,andviralparticles(65–90nmindiameter)arewhichfurthercontributestopigletmortality.observedwithincytoplasmicvacuoles(Figure 31.4a)EndemicTGEreferstothepersistenceofthevirusand(Pensaertet al.1970;Thake1968).Virusmaylinehostdiseaseinaherdperpetuatedbythecontinualorfre-cellmembranesafterexitfrominfectedcellsquentinfluxofsusceptibleswine.EndemicTGEisa(Figure 31.4b).Asimilarintracellularreplicationsce-commonsequeltoaprimaryoutbreakandoccursinnariohasbeendescribedforPEDV(Figure 31.4c).TGEVseropositiveherdsthathavefrequentfarrowingsglycoproteinsarealsoevidentonthesurfaceofinfected(Stepaneket al.1979),herdadditions,orcomminglingofSTcells(Laviadaet al.1990).susceptiblepigs.Inendemicallyinfectedherds,TGEV 31Coronaviruses493(a)(b)N(c)Figure31.4Electronmicrographs.(a)TGEVinvesiclesoftheendoplasmicreticulumofapigkidneycell(36hourspostinfection).Bar = 100nm.(b)TGEVliningthecellmembraneofapigkidneycell(36hourspostinfection).N = nucleus;bar = 200nm.(c)APEDV‐infectedVerocell.PEDVparticles(arrowheads)onthecellsurfaceandinsideavesicle(arrow)oftheinfectedVerocell.Scalebar = 200nm.For(c),Source:Okaet al.(2014).ReproducedwithpermissionofElsevier.spreadsslowlyamongadultswine(Pritchard1987).SowsEndemicTGEinsucklingorrecentlyweanedpigscanarefrequentlyimmuneandasymptomaticandwillbedifficulttodiagnoseandmustbedifferentiatedfromtransferavariabledegreeofpassivelactogenicimmunityothertypesofendemicdiarrhealpathogenscommonintotheirprogeny.Intheseherds,mildTGEVdiarrheayoungpigs,suchasPEDV,PDCoV,rotavirus,andoccurs,andmortalityisusuallyunder10–20%inpigsEscherichiacoli.EndemicTGEpersistsintheherdasfromapproximately6daysofageuntilapproximatelylongassusceptibleorpartiallyimmuneswineareexposed2weekspostweaning.Theage‐relatedeffectsareinflu-toTGEV.Itisunclearwhetherthesourceofvirusisfromencedbythemanagementsystemandthedegreeofreactivationofvirussheddingincarrierswineorreintro-passiveimmunityfromthesow.ductionofvirusintotheherdfromanexternalsource. 494SectionIIIViralDiseasesPorcinerespiratorycoronavirusofTGEVfromoneherdtoanother,sincetheycanshedPRCVisaTGEVvariantthatinfectstherespiratorytractvirusintheirfecesforvariableperiods(Haeltermanwithlimitedornosheddinginfeces(Pensaert1989).1962;McClurkinet al.1970)andvirusexcretedbydogsHowever,PRCV‐infectedpigsproduceantibodiesthatwasinfectiousforpigs(Haelterman1962;ReynoldsandneutralizeTGEV.ThefirstisolationofPRCVwasinGarwes1979).Belgiumin1984(Pensaertet al.1986).In1989,PRCVTheconcentrationofstarlings(Sturnusvulgaris)inwasdetectedintwoherdsintheUnitedStateswithnowinterinfeedingareasofswinemayfostermechanicalhistoryofTGEVvaccinationorclinicaldisease(HillspreadofTGEVamongfarms.Pilchard(1965)reportedet al.1990;Wesleyet al.1990).thatTGEVwasdetectedinthedroppingsofstarlingsforSwinepopulationdensity,distancebetweenfarms,andupto32hoursafterfeedingTGEV.Houseflies(MuscaseasoninfluencePRCVepidemiology(Have1990;domestica)havealsobeenproposedaspossiblemechan-Pensaert1989).PRCVinfectspigsofallagesbycontacticalvectorsforTGEV.TGEVantigenwasdetectedinorairbornetransmission.PRCVinfectionsareoftensub-flieswithinaswineherd,andexperimentallyinoculatedclinical.TheriskofPRCVspreadincreasesinareasoffliesexcretedTGEVfor3days(GoughandJorgensonhighswinedensity,wheretheviruscantravelseveral1983).AccordingtosurveysconductedinCentralkilometers.ThevirushasspreadrapidlyandextensivelyEurope,antibodiesagainstTGEVarealsopresentininpigsinEurope(BrownandCartwright1986;Haveapproximately30%oftheferalpigpopulation(Sedlak1990;Laudeet al.1993;vanNieuwstadtet al.1989)andet al.2008).becameendemiceveninTGEV‐freecountries(LaudeThethirdpossibilityrelatingtoTGEtransmissioniset al.1993;Pensaert1989;Pensaertet al.1993).AlimitedthedurationofTGEVsheddingandtheroleofthecar-serologicalsurveyin1995intheUnitedStatessuggestedrierpig.NasalsheddingofPRCVinexperimentallythatmanyasymptomaticherdsinIowawereseropositiveinfectedpigsoccursthrough10dayspostinfection(DPI)forPRCV(Wesleyet al.1997).(Onnoet al.1989;Wesleyet al.1990).However,howPRCVcirculatesintheherd,infectingpigsbeforethelongpigsclinicallyrecoveredfromTGEVandPRCVageof10–15weeksafterpassivelyacquiredmaternalinfectioninthefieldremaininfectiousisunknown.Oneantibodieshavedeclined.Introductionofpigsintofat-reportindicatedchronicand/orpersistentTGEVfecalteningunitsandcomminglingofPRCV‐negativeandsheddingforupto18months,suggestingapossiblerolePRCV‐positivepigsfromdiversesourcesresultinsero-forthelong‐termcarrierhogintransmittingTGEVconversiontoPRCVinpigsshortlyafterintroduction(WoodsandWesley1998).AlthoughTGEVhasbeenintomostunits.detectedintheintestinalandrespiratorytractsforperi-SusceptiblepigsexperimentallyinfectedwithPRCVodsofupto104DPI(Underdahlet al.1975),itisshedvirusfromnasalsecretionsforlessthan2weeksunknownwhetherinfectiousvirusisshedortransmit-(Onnoet al.1989;VanCottet al.1993;Wesleyet al.ted.Additionofsentinelpigstoaherdat3,4,and1990).Thereisnoevidenceforthefecal–oraltransmis-5monthsafterapreviousTGEoutbreakresultedinnosionofPRCV.PRCVpersistsinclosedbreedingfarmsbyinfectionsintheintroducedpigs,asdeterminedbyregularlyinfectingnewlyweanedpigs,eveninthepres-serologictests(Derbyshireet al.1969).enceofmaternalantibodies(Pensaertet al.1993).PRCVcanpersistintheherdthroughouttheyear,oritcanPathogenesisdisappearinsummerandreappearinthenurseryandfatteningunitsinwinter.CoincidentwiththewidespreadIntestinaland extraintestinalreplicationof TGEVdisseminationofPRCV,theseroprevalenceofTGEVinJejunalenterocytesundergomassivenecrosiswithinEuropehasdecreased,toalowprevalence(Brownand12–24hoursafterinfection,resultinginmarkedreduc-Paton1991;Pensaertet al.1993).tioninenzymaticactivity(alkalinephosphatase,lactase,etc.)inthesmallintestine.ThisdisruptsdigestionandTransmissionand reservoirscellulartransportofnutrientsandelectrolytes(includingAnepidemiologicalfeatureofTGEisitsseasonalappear-sodium),therebycausinganaccumulationofliquidinanceduringwinter.Haelterman(1962)suggestedthattheintestinallumenandacutemalabsorptivediarrheathisisbecausethevirusisstablewhenfrozenandmore(Moon1978)thatleadstosevereandfataldehydrationinlabilewhenexposedtoheatortosunlight.Thiswouldpiglets(Butleret al.1974)andlossofextravascularallowvirustransmissionbetweenherdsinwinteronprotein.Dehydrationisalsorelatedtometabolicacidosisfomitesoranimals.HeproposedatleastthreepossiblecoupledwithabnormalcardiacfunctionduetoreservoirsforTGEVbetweenseasonalepidemics:(1)pighyperkalemia.farmsinwhichthevirusspreadssubclinically,(2)hostsTheseverevillousatrophyinthejejunum(Figure 31.5aotherthanswine,and(3)carrierpigs.Thereisevidenceandb)andtoalesserextentintheileumofTGEV‐fortheexistenceofTGEVinnon‐porcinehosts.Cats,infectedpigsisoftenabsentintheproximalduodenumdogs,andfoxeshavebeensuggestedaspossiblecarriers(HooperandHaelterman1966a).Villousatrophyismore (a)(b)(c)(d)(e)Figure31.5Villiofthejejunumfromanormalpig(a)andfromaTGEV‐infectedpig(b),asviewedthroughadissectingmicroscope(approximately×10).Hematoxylinandeosin(H&E)‐stainedjejunumofanormalgnotobioticpig(17daysofage),showingnormalvilli(×80)(c)(Source:Junget al.2015b);ofaPEDV‐infectedgnotobioticpig(26daysofage)at46hourspostinoculation(atonsetofclinicalsigns),showingacutediffuse,severeatrophicjejunitis(×200)(d)(Source:Junget al.2014);andofaPDCoV‐infectedgnotobioticpig(17daysofage)at3dayspostinoculation(×40)(e)(Source:Junget al.2015b).ChapterNo.:1TitleName:c31.inddComp.by:Date:18Mar2019Time:06:57:37AMStage:WorkFlow:PageNumber:495 496SectionIIIViralDiseasessevereinnewbornpigsthanin3‐week‐oldpigs(MoonReplicationof PRCVin the respiratorytract1978),suggestinghighersusceptibilityofneonatestoPRCVhasatropismfortherespiratorytract.Itreplicates78TGEVinfection.Asimilardegreeanddistributionoftohightitersinporcinelungs(1×10–10TCID50)insmallintestinalvillousatrophyisalsoevidentforPEDVtype1and2pneumocytesandinfectsepithelialcellsof(Figure 31.5candd)andPDCoV(Figure 31.5cande).thenares,trachea,bronchi,bronchioles,alveoli,and,Mechanismstoaccountforage‐dependentsuscepti-occasionally,alveolarmacrophages(Atanasovaet al.bilitytoclinicaldiseaseincludetheslowerreplacement2008;Junget al.2007,2009;O’Tooleet al.1989;Pensaertinnewbornpigsofinfectedvillousepithelialcellsbyet al.1986).PRCVinducesnecrosisofinfectedcells,migrationofcellsfromcrypts(Moon1978).Thesenewlyincreasinginnateimmuneresponsesattheinfectionreplacedvillousenterocytesarereportedlyresistanttosites,includinghighlevelsofIFN‐αandnitricoxideinTGEVinfection,possiblyduetoinductionofinnatelungs(Junget al.2009,2010).InnatecytokinesinhibitimmunityandintestinalIFN(Abou‐YoussefandRisticinitialviralreplicationandmodulateTh1/Th2responses1972)ortheinabilityoftheregeneratingcellstosupportwiththelatterenhancingB‐cellresponses,leadingtovirusgrowth.secretionofVNantibodies.TheexposuredoseofinfectiousvirusplaysamajorVirussheddinginnasalsecretionslastedfor4–6daysroleinage‐dependentsusceptibility.TheinfectiousdoseafterexperimentalPRCVinfection.TheseverityofofTGEVneededtoinfecta6‐month‐oldmarkethogwasPRCV‐inducedpneumoniaandviralreplicationinlung4peakedat8–10DPI,coincidingwithincreasednumbers10timesgreaterthanthatneededtoinfecta2‐day‐oldpiglet(WitteandWalther1976).Moreover,theseverityofTandBcellsandfrequencyoflymphocyticinflamma-ofclinicalsignsduetoTGEVincreasedwhenpigsweretion.Thereafter,pulmonarylesionsandclinicalsignsinjectedwithasyntheticcorticosteroid,dexamethasoneresolvedconcurrentlywithincreasedVNantibodytiters(ShimizuandShimizu1979),similartodexamethasone‐(Atanasovaet al.2008;Junget al.2009).aggravatedlungpathologyinPRCVinfection(Junget al.Dependingontheexperimentalconditionsandthe2007;Zhanget al.2008),indicatingthepossibleeffectofvirusstrainsused,PRCVmaybedetectedinblood,stressonTGEV/PRCVdiseaseseverity.Inaddition,tracheobronchiallymphnodes,andoccasionallytheTGEVincombinationwithotherentericpathogens,smallintestinesofinfectedpigs.However,virusinsuchasE.coliorporcinerotavirus,causedmoresevereinfectedenterocytesdoesnotspreadtoadjacentcellsenteritisthaneitherinfectionalone(Underdahlet al.(Coxet al.1990a,b),andfecalsheddingisloworunde-1972).Likewise,PRCVrespiratoryinfectionandlungtectable.ThelimitedintestinalreplicationofPRCVlesionswereexacerbatedbypreexistingporcinerepro-mayberelatedtothedeletionintheSgene.Whenductiveandrespiratorysyndromevirus(PRRSV)infec-fecalandnasalisolatesofPRCVfromthesamepigstion(Junget al.2009;vanReethet al.1996).werecomparedgenetically,onlypointmutations,butExtraintestinalsitesforTGEVreplicationincludenotadditionaldeletions,werenotedintheSgenelungs(alveolarmacrophages)andmammarytissues(Costantiniet al.2004).(Kemenyet al.1975).OronasalinfectionofpigswithTGEVcausedpneumonia(Underdahlet al.1975).CellClinicalsignsculture‐attenuatedbutnotvirulentTGEVreplicatedinculturesofalveolarmacrophagesinvitro,suggestingaEpidemicTGEpossibleroleforthesecellsinlunginfection(Laudeet al.TypicalclinicalsignsofTGEinseronegativepigletsare1984).Moreover,TGEVwasdetectedinnasalsecretionsvomitingandprofusewatery,yellowishdiarrhea,withofinfectedpiglets(VanCottet al.1993)andlactatingrapidlossofweight,dehydration,andhighmorbiditysowsexposedtoinfectedpiglets(Kemenyet al.1975).andmortalityinpigsunder2weeksofage.TheseverityCell‐culturedstrainsofTGEVgenerallyshowedreducedofclinicalsigns,durationofdisease,andmortalityarevirulenceinpigs,withlessreplicationinthegutandinverselyrelatedtotheageofthepig.Mostpigsunderhigherlevelsofreplicationintheupperrespiratorytract7daysofagewilldiein2–7daysafteronsetofclinicalcomparedwithvirulentTGEV(Fredericket al.1976;signs.Mostsucklingpigsover3weeksofagewillsurvive,VanCottet al.1993).butmayremainstunted.ClinicalsignsofTGEinfinish-TGEVreplicatedinmammarytissuesoflactatingsowsingswineandinsowsincludeinappetence,transient(SaifandBohl1983)andinfectedsowsshedvirusinmilkdiarrhea,andvomiting.(KemenyandWoods1977).Theclinicalorepidemio-Theincubationperiodisshort,usually18hourstologicalsignificanceofmammaryglandinfectionwith3days.InfectiongenerallyspreadsrapidlythroughtheTGEVunderfieldconditionsisunclear,butagalactiaisentiregroup,andmostswineareaffectedin2–3days,oftenseeninTGEV‐infectedsowsandTGEVspreadsbutthisismorelikelytooccurinwinterthansummerrapidlyamongpigs.(Haelterman1962). 31Coronaviruses497EndemicTGEhasrevealedalterationsinthemicrovilli,mitochondria,EndemicTGEoccursinlargeherdsthatfarrowfre-endoplasmicreticulum,andothercytoplasmiccompo-quentlyandinTGEVorPRCVseropositiveherds.nents.Virusparticles,primarilyincytoplasmicvacuoles,Clinicalsignsareusuallylessseverethanthoseinseron-wereobservedinvillousenterocytesandinMcells,lym-egativepigsofthesameage.Mortalityislow,especiallyifphocytes,andmacrophagesinthedomeregionsofpigsarekeptwarm.TheclinicalsignsinsucklingpigsPeyer’spatches(Chuet al.1982;Thake1968).canresemblerotavirus,PEDV,orPDCoVdiarrhea(BohlPathologicfindingsandtheextentofvillousatrophyet al.1978;PensaertanddeBouck1978;Wanget al.arehighlyvariableinpigsfromendemicallyinfected2014a).Insomeherds,endemicTGEismanifestedpri-herds(Pritchard1987).MoxleyandOlson(1989)showedmarilyinweanedpigsandmaybeconfusedwithPEDVthatthelevelofpassiveimmunityinTGEV‐infectedpigs(Madsonet al.2014),E.coli,coccidia,orrotavirusinfec-influencedboththedegreeofvillousatrophyanditstions(Pritchard1987).segmentaldistribution.VillousatrophywasminimalinpigsnursingsowspreviouslyinfectedwithvirulentPorcinerespiratorycoronavirusTGEV,comparedwithpigsnursingseronegativesowsorExperimentally,PRCVinfectionofpigsismostlysub-sowsgivenliveattenuatedvaccines.Inpartiallypro-clinicalwithself‐limitingrespiratoryinfection.Theearlytectedpigs,villousatrophywasprimarilyintheileumantiviraleffectsofinnateimmuneresponsestoPRCVandnotthejejunum.Similarobservationswerenotedininfection,followedbycell‐mediatedandantibodypigsfromherdswithendemicTGE.responses,likelyeffectivelycontroltheinfection(Atanasovaet al.2008;Junget al.2007,2009,2010;PRCVlesionsZhanget al.2008).Clinicalsignsinclude(1)respiratorysigns(e.g.coughing,abdominalbreathing,dyspnea),(2)PRCVprimarilycausesupperandlowerrespiratorytractdepressionand/oranorexia,and(3)slightlydecreaseddisease.ThePRCV‐inducedlesionsaregenerallylimitedgrowthrates(Lanzaet al.1992;vanReethet al.1996;tothelungsandcommonlyobservedasconsolidationofWesleyandWoods1996).thelungandbronchointerstitialpneumonia,withfre-Theseverityandfrequencyofclinicalsignsareinflu-quentperibronchiolarandperivascularlymphohistio-encedbythepresenceofotherbacterialorviralpatho-cyticcuffing(Atanasovaet al.2008;Coxet al.1990a;gensintheherd.Forexample,coinfectionwithPRRSVHalburet al.1993;Jabraneet al.1994;Junget al.2007,canaltertheseverityofeitherPRCVorPRRSVinfec-2009).PRCV‐inducedbronchointerstitialpneumoniaistions.InoculationwithPRRSVfollowedbyPRCVcharacterizedby(1)thickeningofthealveolarseptabyresultedinprolongedfeverwithrespiratorydisease,infiltrationofinflammatoryleucocytes,principallymac-reducedweightgain,andprolongedseverepneumoniarophagesandlymphocytes;(2)type2pneumocyte(Junget al.2009;vanReethet al.1996).Ongoingorpre-hypertrophyandhyperplasia;(3)accumulationofexistingPRRSVinfectionsignificantlysuppressedinnatenecroticcellsandinflammatoryleucocytesinalveolarimmuneresponses(reducedIFN‐αlevelsinlungandandbronchiolarluminaduetoairwayepithelialnecrosis;bloodnaturalkiller[NK]cellcytotoxicity)duringearlyand(4)peribronchiolarorperivascularlymphohistio-PRCVinfection,whichmayexacerbatePRCVpneumo-cyticinflammation.Within10daysofPRCVinfection,nia(Junget al.2009).thevirussimultaneouslyinducesinflammatory(cellnecrotizing)andproliferative(alveolarseptalthicken-ing)chronic‐activebronchointerstitialpneumonia(JungTGEVlesionset al.2007,2009).TGEgrosslesionsareconfinedtothegastrointestinaltract.ThestomachisdistendedwithcurdledmilkandDiagnosismayhavepetechialhemorrhages(HooperandHaelterman1966b).ThesmallintestineisdistendedThecollectionandpreservationofappropriateclinicalwithyellowfluidandcurdled,undigestedmilk.Thewallspecimensisnecessaryforreliablediagnosis.Becauseisthinandtransparent,duetovillousatrophy.AmajorclinicalsignsandatrophicenteritiscausedbyTGEVarelesionofTGEismarkedlyshortenedvilliofthejejunumfrequentlyobservedinotherentericinfections(rotavi-andileum(Figure 31.5aandb),similartoPEDVandrus,PEDV,PDCoV,andcoccidia),laboratorydiagnosisPDCoVlesions(Figure 31.5c–e)(Deboucket al.1981;ofTGEmustbeaccomplishedbyoneormoreofthefol-Junget al.2015b),butusuallymoresevereandextensivelowingprocedures:detectionofviralantigenornucleicthanthatseeninrotavirusdiarrhea(Bohlet al.1978).acidsinfecesorlesions,virusisolationfromspecimens,InfectionswithsomestrainsofE.coliandcoccidiamayordetectionofTGEVantibodies.producesimilarlesions(Hornichet al.1977).DiagnosisofPRCVrequiressimilarprocedures,butTransmissionEMofTGEV‐infectedvillousenterocyteswithafocusonrespiratoryspecimens.Evaluationof 498SectionIIIViralDiseasesclinicalsigns,histologiclesions,andtissuedistributionrequirepigsintheearlystageofinfection.Asimilarviralofviralantigenmayprovideapresumptivediagnosis.antigendistributionisseeninthesmallintestineofPRCVdoesnotcausediarrheaorvillousatrophyandPEDV‐(Figure 31.6b)andPDCoV‐infectedpigsreplicatesalmostexclusivelyinrespiratorytissues(Figure 31.6c).AnexceptionforPEDVandPDCoVisthe(Pensaert1989).Thus,PRCVissuspectedifthereisanti-occasionaldetectionofviralantigensinthecryptepithe-geninlungtissues,seroconversiontoTGEV/PRCV,andlialcellsandthecolon.nosignsofentericdisease.Anenzyme‐linkedimmunosorbentassay(ELISA)usingMAborpolyclonalantibodiestoTGEVisusedtoDetectionof viralantigensornucleicacidsdetectTGEVantigensincellculture,feces,andintestinalDetectionofTGEVantigeninsmallintestinalentero-contents(Lanzaet al.1995;Sestaket al.1996,1999a;vancytesiscommonlyusedtodiagnoseTGE.EitherIFNieuwstadtet al.1988)orPRCVantigenincellculture,(Pensaertet al.1970)orimmunohistochemical(IHC)nasalswabs,orlunghomogenates(Lanzaet al.1995).(Shoupet al.1996)techniquesusingMAbagainsttheRT‐PCRorreal‐timeRT‐PCRiscurrentlyusedforhighlyconservedNproteinofTGEVmaybeusedinfro-diagnosisofTGEVanddifferentiationofTGEV,PRCV,zenorformalin‐fixedtissues(Figure 31.6a),buttheyPDCoV,andPEDV(Costantiniet al.2004;Kimet al.(a)(b)(c)Figure31.6Immunofluorescentstaining(green)of(a)TGEVantigensinalmost100%oftheilealenterocytesliningthevilliofaTGEV‐infectedpiglet.NoteabsenceofTGEVantigensinthecryptepithelialcells.(b)PEDVantigensintheenterocytesofthejejunumofapigletat67hourspostinoculationwiththeemergingnon‐SINDELPEDVstrainPC21A(37–41hoursafteronsetofclinicalsigns),indicatingthattheepithelialcellsliningatrophiedvilliarepositiveforPEDV(×200).Source:Junget al.2014.(c)PDCoVantigensinthejejunumofagnotobioticpigat3dayspostinoculationwithPDCoVstrainOH‐FD22,showingsimilarlocalizationofPDCoVantigensinthecytoplasmofvillousepithelialcells(×400). 31Coronaviruses4992000a,2001,2007;Masudaet al.2016;Ogawaet al.theseantibodiesbasedonusingMAbstoTGEVanti-2009).PRCV/TGEVdifferentiationisaccomplishedgenicsitesthatareabsentonthePRCVSproteinusingPCRprimerstargetingtheSgenedeletionregion(Bernardet al.1989;Callebautet al.1989;DelmasandinPRCVstrains.MultiplexRT‐PCRandreal‐timeRT‐Laude1990;Garweset al.1988;Sanchezet al.1990;PCRassayshavebeendevelopedforthesimultaneousSestaket al.1999b;Simkinset al.1992,1993).Blockingdetectionofmajorporcinevirusesassociatedwithdiar-ELISAsshouldonlybeappliedonaherdbasisbecauserheaincludingrotavirus,TGEV,PDCoV,andPEDVsomepigswithlowTGEVorPRCVantibodytitersmay(Masudaet al.2016;Ogawaet al.2009).Theseassaysnotbedetected(Callebautet al.1989;Sestaket al.permitdetectionofuptoninevirusesinasample.1999b;Simkinset al.1993)andtheaccuracyofcommer-Moreover,multiplexmicroarrayhybridizationwascialELISAsfordifferentiatingUSstrainsofPRCVandemployedfortherapiddifferentialdiagnosisofeightTGEVislow(Sestaket al.1999b).ELISAtestswereusedCoVsincludingTGEV(Chenet al.2005).todifferentiatenotonlybetweenTGEVandPRCVanti-bodiesbutalsobetweenTGEVandTGEV‐likeCCoVsElectronmicroscopy(EM)orclassicalCCoV‐IIantibodies(Eliaet al.2010;LopezTGEVcanbedemonstratedintheintestinalcontentset al.2009).andfecesofinfectedpigsbynegativecontrasttransmis-AriseinantibodytiterbetweenacuteandconvalescentsionEM(Figure 31.2a).ImmuneelectronmicroscopyserumsamplesprovidesretrospectiveevidenceforTGEV(IEM)hasadvantagesoverconventionalEMinbeingorPRCVinfection.TodeterminethepresenceofendemicmoresensitivefordetectingTGEVanddistinguishingitTGEorPRCV,serumsamplesfrom2‐to6‐month‐oldfromPEDV,PDCoV,andenvelopedmembranousdebris,swine(oftenfreeofpassivelyacquiredantibodiesatthisaswellasconcurrentlydetectingthepresenceofotherage)canbetestedforantibodies(Derbyshireet al.1969).entericviruses(Figure 31.2b)(Saifet al.1977).TheVNtestusingcellculture‐adaptedviruseshasbeenthemostwidelyused(Bohl1979;BohlandKumagaiVirusisolation1965).VNantibodiestoTGEVaredetectableinserumbyPrimaryandsecondarypigkidney(PK)cells(Bohland7–8DPIandpersistforatleast18months.LittleisknownKumagai1965)orcelllines(Laudeet al.1981),porcineregardingthepersistenceofVNantibodiestoPRCVthyroidcells(Witte1971),andtheMcClurkinswinetes-withinaherd.AntibodyELISAtests(Bernardet al.1989;ticle(ST)cellline(McClurkinandNorman1966)areBerthonet al.1990;Callebautet al.1989;Garweset al.recommendedfortheisolationofTGEVfromfecesor1988;Sestaket al.1999a,b;vanNieuwstadtet al.1989)gutcontentsofinfectedpigs.Distinctcytopathiceffectshavebeenreported,buttheyrequireconcentratedpuri-(CPE)maybenegligibleuponprimaryisolationoffieldfiedvirusorSorNproteinforcoatingELISAplates.strains,requiringadditionalpassages.TheCPEconsistsofenlarged,roundedcellswithaballoon‐likeappearanceImmunity(BohlandKumagai1965).FordetectingviralCPEorplaques,thesensitivityofSTcellscanbefurtherActiveimmunityto TGEVenhancedbyaddingpancreatinortrypsintocellcultureThedurationofactiveimmunityinswineafteroralmedia(Bohl1979)andusingoldercells.infectionwithvirulentTGEVhasnotbeenwellcharac-PigkidneyandSTcellsarepreferredforisolatingterized.Intestinalinfectionofbreeding‐ageswineresultsPRCVfromnasalswabfluidsorlungtissuehomogen-indetectableserumantibodiesthatpersistforatleastates.PRCV‐andTGEV‐inducedCPEaresimilar,with6monthsandpossiblyseveralyears(Stepaneket al.syncytiafrequentlyobservedasalsoreportedforPEDV1979).AlthoughserumantibodiesprovideserologicandSARSCoVgrowninVerocells(HofmannandWylerevidenceofTGEVorPRCVinfection,theyaffordlittle1988;Ksiazeket al.2003).IdentificationofcellcultureindicationofthedegreeofactiveimmunitytoTGEV.viruscanbedonebyVN,IFstaining,orIEMusingspe-SwinethathaverecoveredfromTGEareimmunetosub-cificTGEVantiserumordifferentialMAbs(Garwessequentshort‐termchallenge,presumablyduetolocalet al.1988)andRT‐PCRusingvirus‐specificprimersimmunitywithintheintestinalmucosa(Brimet al.1995;(EnjuanesandVanderZeijst1995;Kimet al.2000a;Saifet al.1994;VanCottet al.1993,1994).TheageandLaudeet al.1993).immunestatusoftheanimalatinitialinfectionandtheseverityofthechallengeinfluencethecompletenessandSerologydurationofactiveimmunity.TGEVantibodiescanbedetectedbyseveralserologicThemechanismofactiveimmunityinthegutrelatestotests.However,TGEVserologyiscomplicatedbythestimulationofthesecretoryIgA(sIgA)immunesystemfactthatbothTGEVandPRCVinduceVNantibodieswithproductionofsIgAantibodiesbyintestinalplasmathatarequalitativelyandquantitativelysimilar(Pensaertcells(Saifet al.1994;VanCottet al.1993,1994).IgA1989).AblockingELISAtestcandifferentiatebetweenTGEVantibodiesandantibody‐secretingcells(ASCs) 500SectionIIIViralDiseaseshavebeendetectedintheintestineandserumofpigsinnateimmunitymayplayaroleineitherrecoveryfromafteroral,butnotparenteralinoculationwithTGEVTGEVinfectionorresistancetoreinfectionviatherapid(Kodamaet al.1980;Saifet al.1994;VanCottet al.1993,eliminationofTGEV‐infectedepithelialcells.Some1994).Kodamaet al.(1980)proposedthatdetectionofTGEVstrainscanalsodownregulatehostimmuneIgAantibodyintheserum,presumablyintestinallyresponses.Avirulent(SHXB)butnotattenuated(STC3)derived,mightserveasanindicatorofactiveimmunitytoTGEVstrainimpairedtheabilityofporcineintestinalTGE.Enzyme‐linkedimmunospot(ELISPOT)assaywasDCsormonocyte‐derivedDCstorecognizeantigen,usedtoinvestigatethekineticsofIgAandIgGTGEVmigrate,andinduceT‐cellproliferationinvivoandinantibodyproductionbythepig’ssystemicandlocalgut‐vitro(Zhaoet al.2014).associatedlymphoidtissues(GALT).HighnumbersofIgAASCswereinducedinGALTonlybyvirulentTGEV.PRCV‐inducedactiveimmunityto TGEVIncontrast,liveattenuated(vaccine)TGEVorPRCVThedramaticdeclineinepidemicoutbreaksofTGEinstrainsinducedsignificantlyfewerIgAASCs(BerthonEuropefollowingthewidespreaddisseminationofPRCVet al.1990;Saifet al.1994;VanCottet al.1993,1994).promptedresearcherstoexamineifrespiratoryPRCVBesideslocalantibody‐mediatedimmunity,cell‐mediatedinfectioncouldinduceprotectiveintestinalimmunityimmunity(CMI)mayalsobeimportantinactiveimmu-againstTGEV.TheconsensusfromseveralstudieswasnityagainstTGEVinfections.However,onlyindirectevi-thatpriorinfectionofnursingorweanedpigswithPRCVdenceexistsconcerningtheroleofCMIinresistancetoprovidedpartialimmunityagainstTGEVchallenge,asTGEVinfection.CMIwasdemonstratedwithlympho-evidencedbyareduceddurationandlevelofviruscytesobtainedfromGALTofswineorallyinfectedwithsheddinganddiarrheainmostpigsstudied(Brimet al.virulentTGEV(Brimet al.1995;Fredericket al.1976;1995;Coxet al.1993;VanCottet al.1994;WesleyandShimizuandShimizu1979),whereasswineparenterallyWoods1996).ororonasallyinoculatedwithattenuatedTGEVorThispartialimmunitypresumablyisrelatedtothePRCV developedCMImainlyinsystemicsites.rapidincreaseinTGEVVNantibodies(Coxet al.1993;LymphoproliferativeresponsestoTGEVpersistedwithinWesleyandWoods1996)andnumbersofIgGandIgAGALT,butnotsystemiclymphocytes,foratleast110daysASCsintheintestinesofPRCV‐exposedpigsafterTGEVafteroralinfectionof6‐month‐oldswine(Shimizuandchallenge(Saifet al.1994;VanCottet al.1994).TheShimizu1979),butforonlyabout14–21daysafterinfec-alteredtissuetropismofPRCVwasalsolinkedtoashifttionofyounger(7‐to11‐day‐old)pigs(Brimet al.1995).inantibodyresponses;thatis,inTGEV‐infectedpigs,CD4ThelpercellsareinvolvedinlymphoproliferativemoreIgAASCswerefoundingut,whereasPRCVpre-responsestoTGEV(Antonet al.1995).Potentproduc-dominantlyinducedIgGASCsinthelung(VanCottet al.tionofantiviralIFN‐αbyplasmacytoiddendriticcells1994).MigrationofPRCVIgGandIgAASCsfromthe(DCs)derivedfromTGEV‐infectedswinewasobservedbronchus‐associatedlymphoidtissues(BALT)tothegutuponstimulationofthesecellsinvitrowithTGEVofthePRCV‐exposedpigsafterTGEVchallengemightantigens(Calzada‐Novaet al.2010).explaintherapidanamnesticresponseandthepartialAcorrelationbetweenlymphoproliferativeresponsesprotectioninduced(VanCottet al.1994).However,neo-andlactogenicimmunitytoTGEVwasdescribedinsowsnatalpigsrequiredatleast6–8daysafterPRCVexposurevaccinatedwithattenuatedorrecombinantTGEVtodeveloppartialimmunitytoTGEVchallenge(Wesleyvaccines(Parket al.1998).AlthoughT‐cellepitopesandWoods1996).wereidentifiedbylymphoproliferationstudiesforeachofthethreemajorproteinsofTGEV,adominantfunc-Passiveimmunityto TGEVtionalThelperepitopewasdefinedontheNproteinPassivelactogenicimmunityiscriticaltoprovidenew-(N321)(Antonet al.1995).TheN321peptide‐inducedTbornpigletswithimmediateprotectionagainstTGEVcellscollaboratedintheinvitrosynthesisofTGEVVNinfection.Circulatingpassiveantibodies,acquiredafterantibodiesspecificfortheSprotein.Maximalresponsesabsorptionofcolostralimmunoglobulin(primarilyIgG),wereinducedbynativeSproteincombinedwithrecom-protecttheneonateagainstsystemicbutgenerallynotbinantNprotein.Suchfindingshaveimportantimplica-intestinalinfection(HooperandHaelterman1966a;SaiftionsfordesignofCoVsubunitorotherrecombinantandSestak2006).MechanismsofpassiveimmunitytoCoVvaccines.TGEVinfectionshavebeenreviewed(Chatthaet al.Becauselymphocytecytotoxicitywasabsentinnew-2015;SaifandBohl1979;SaifandJackwood1990;Saifbornpigletsanddecreasedinparturientsows,itwasandSestak2006).SwinerecoveredfromTGEtransmitproposedthatalackofNKcellactivityagainstTGEV‐passiveimmunitytotheirsucklingpigsbythefrequentinfectedcellsmightcorrelatewiththeincreasedsuscep-ingestionofcolostrumormilk(lactogenicimmunity)tibilityofnewbornpigletsandparturientsowstoTGEVthatcontainsTGEVVNantibodies(Hooperandinfection(CepicaandDerbyshire1984).Thus,CMIorHaelterman1966a).Suchantibodiesinthelumenofthe 31Coronaviruses501intestineneutralizetheingestedTGEVandprotecttheantibodiesinmilk,ahallmarkofprotectionintheseandsusceptiblesmallintestinalenterocytes.Thisisaccom-otherstudies(WesleyandWoods1993)wasinductionofplishednaturallywhenpigletssuckleimmunesowsactiveimmunitytoTGEVinthesowpreventingclinicalfrequentlyorbycontinuousfeedingofantiserumtopig-diseaseoragalactia.lets.Duringthefirstweekoflactation,IgAbecomesBesidesquantitativedifferencesinthelevelsofIgAdominantinmilkandIgGdecreases.antibodiesinducedinmilkofsowsafterexposuretoTGEVIgAantibodiesinmilkarestableinthegutandTGEVorPRCV,researchershaveinvestigatedpotentialprovidethemosteffectiveprotection,butIgGantibodiesdifferencesinvirusepitopesrecognizedbythemilkIgAarealsoprotectiveifhightitersaremaintainedinmilkantibodies(DeDiegoet al.1992,1994).InTGEV‐aftervaccination(BohlandSaif1975)orbyartificialinfectedsows,antigenicsubsiteA(Aa,Ab,Ac),followedfeedingofcolostralIgGantibodies(Stoneet al.1977).byantigenicsubsiteD,wasthebestinducerofIgAanti-TGEVIgGantibodiesareproducedinthesow’smilkbodies,whileafterPRCVinfection,antigenicsiteDandafterparenteralorsystemicimmunization,whereassubsiteAbwereimmunodominant(Figure 31.3).Thus,TGEVIgAantibodiesoccurinmilkafterintestinalinfec-onlyIgArecognizingatleastantigenicsitesAandDtion.ItispostulatedthatIgAimmunocytesmigratetoconferredprotectioninvivo,whereasanyimmunoglob-themammaryglandafterantigenicstimulationintheulinisotypereactivetooneantigenicsiteneutralizedgutwheretheylocalizeandsecreteIgAantibodiesintovirusinvitro.colostrumandmilkthatplayakeyroleinpassiveintesti-nalimmunityofsucklingpigs(BohlandSaif1975;SaifPreventionand controlandBohl1979;SaifandJackwood1990;SaifandSestak2006).The“gut–mammary”immunologicaxis,firstpro-TreatmentposedinrelationtoTGEVinfectionsinswine(Bohlet al.Noantiviraldrugshavebeendevelopedfortreatmentof1972;Saifet al.1972),providedtheinitialconceptforaTGE.AfterthediscoveryofSARSCoV,studieswerecon-commonmucosalimmunesystem.Thisconceptcontin-ductedwithvarioussurrogateviruses,includingTGEV,uestobeimportantinthedesignofmaternalvaccinestodevelopanti‐CoVagents.Ortegoet al.(2007)usedthatarecapableofprovidingeffectivelactogenicimmu-TGEVdeletionmutantstoshowthatabsenceoftheEnityagainstentericpathogens.proteinblocksvirustraffickingintheendoplasmicretic-ulumandpreventsvirusmaturation.RNAinterferencePRCV‐inducedpassiveimmunityto TGEV(RNAi)targetingtheviralRNApolymerasewasstudiedTheincidenceandseverityofTGEincountrieswithinvitroasastrategytopreventTGEVinfection(ZhouPRCVhasdeclinedsincePRCVhasbecomewidespreadet al.2007).Althoughprotectiveinvitro,theresultsof(Schwegmann‐WesselsandHerrler2006).ThissuggestsanalogousinvivoexperimentswerelessconvincingthatpriorexposureofswinetoPRCVimpartspartial(Zhouet al.2010).immunitytoTGEV(Laudeet al.1993;Pensaert1989).StudiessuggestthatIFNmayactivateNKcellsinnew-PriornaturalexposureofsowstoPRCVinducedavar-bornpigs,contributingtoresistancetochallengewithiabledegreeofpassiveprotection(44–53%mortality)TGEV(LesnickandDerbyshire1988;LoewenandagainstexperimentalTGEVchallengeofsucklingpigsDerbyshire1988).Inaddition,duringafieldoutbreakof(Bernardet al.1989;PatonandBrown1990).VariableTGE,1‐to12‐day‐oldpigletstreatedorallyfor4daysprotectioninthefieldduringTGEoutbreakswasalsowith1–20IUofhumanIFN‐αhadsignificantlygreaternotedamonglittersofPRCV‐exposedsows(Pensaertsurvivalratesthanplacebo‐treatedpiglets(Cummins1989;Sanchezet al.1990).Similarvariablelevelsofpro-et al.1995).tection(30–67%mortality)werereportedafterTGEVTheonlyavailabletreatmentforTGEistoalleviatechallengeofpigletssucklingsowsthathadbeenexperi-starvation,dehydration,andacidosis.Parenteraltreat-mentallyinfectedorreinfectedwithPRCVduringpreg-mentwithfluids,electrolytes,andnutrientsareeffectivenancy(DeDiegoet al.1992;Lanzaet al.1995;Sanchezintreatingyoungpigs,butnotpracticalunderfarmcon-et al.1990;Sestaket al.1996;WesleyandWoods1993).ditions.Oraltherapywithbalancedelectrolyteorglu-Inthelattertwostudies,littermortalitywaslowestcosesolutionsiscontraindicatedinyoungpigs(Moon(range = 0–27%),andIgAandIgGmilkantibodytiters1978).Thefollowingmeasuresaresuggested:provideawerehighestinsowsmultiplyexposedtoPRCVduringwarm(above32°C[90°F]),draft‐free,dryenvironmenttwosubsequentpregnancies.Theseexperimentalfind-andprovidewaterornutrientsolutionsfreelytoTGEV‐ingsagreedwithfieldreportsthatnaturallyPRCV‐infectedpigs.SuchmeasuresreducedmortalityinpigsexposedsowsreinfectedwithPRCVduringpregnancythatwereinfectedatmorethan3–4daysofage.secretedPRCVIgAantibodiesinmilkandprovidedaAntibacterialtherapyisbeneficialin2‐to5‐week‐oldhighdegreeofprotection(0–12.5%mortality)toTGEVpigsifthereisconcurrentinfectionwithbacterialpatho-challenge(Sanchezet al.1990).BesidesPRCVIgAgens.Cross‐fosteringofinfectedorsusceptiblelitters 502SectionIIIViralDiseasesontoTGE‐immunesowswasusefulinsomefieldout-pigs,thedelayitselfcanreducemortality.Second,breakbreaks(Stepaneket al.1979).thecycleofinfectionbyeliminatingreservoirsofsuscep-tiblepigsinaunit:preventthecontinualinfluxofsus-Managementceptibleanimalsintotheherdtemporarily(alterBiosecurityfarrowingscheduleaspossible),utilizeotherfacilities,SwineintheincubativeorviralsheddingstageoftheandcreatesmallerfarrowingandnursingunitstoachievediseaseorpossiblycarrierscantransmitTGEV.Tointro-anall‐in/all‐outsystem.duceswineintoaherd,precautionsareneededtoassurethatswineoriginatefromherdsfreeofTGE,aresero-Immunoprophylaxislogicallynegative,and/orhavebeenplacedinisolationVaccinesand vaccinationsonthefarmfor2–4weeksbeforebeingaddedtotheThereareseverallicensedTGEVvaccines.Allcontainherd.AfteraTGEoutbreak,atleast4weeksshouldinactivatedorliveattenuatedTGEVandareapprovedelapsefromthelastsignofdiseasebeforeintroducingforuseinpregnantorneonatalswine.Thesevaccinessuchanimalsintoa“clean”herd.FecesfromTGEV‐andtheirefficacyhavebeenreviewed(SaifandSestakinfectedswinecanbecarriedonboots,shoes,clothing,2006)butwillbebrieflysummarized.truckbeds,feeds,andsoonandcanbeasourceofinfec-Manyvariablescomplicatetheevaluationofbothtiontootherherds,requiringstrictdisinfectionregimes,experimentalandcommercialTGEVvaccines,resultingespeciallyinwinter.inconflictingdata.TheseincludethechallengedoseandstrainofTGEV,theageofthepigatchallenge,environ-Afteronsetof TGEand endemicTGEVmentalconditions(especiallytemperature),thehealthWhenTGEoccursonafarmandpregnantanimalshavestatusandmilkingefficiencyofthevaccinatedsow,andnotyetbeenexposed,twoproceduresmayminimizetheimmunestatus(forTGEVorPRCVantibodies)oflossesofnewbornpigs:(1)Ifthesowsareduetofarrowthedamatvaccination.Ifpreviouslyinfectedsowswereinatleast2weeks,usefeedbackmethodstoorallyexposeunknowinglyusedinvaccinechallengestudies,thisthemtovirulentautogenousvirus,suchasaslurryofcouldaccountfordiscrepantresultsseeninimmunemincedintestinesofacutelyinfectedpigs,sothattheyresponsesandpigletprotection.Thispossibilitycanonlywillbeimmuneatfarrowing.(2)Ifthesowswillfarrowbeeliminatedbyusingsensitivetests(suchasVN)toinunder2weeks,attempttoprovidefacilitiesandman-measureTGEV/PRCVantibodiesandbyknowingtheagementprocedurestoavoidexposuretoTGEVuntilatherdhistoryoftestanimalssinceoccurrenceofPRCVinleast3weekspostfarrowing.herdsfurthercomplicatesTGEVvaccinestudies.SomesuccesshasbeenachievedineliminationofTGEVfromepidemicallyinfectedclosedbreederherdsTGEvaccinationof the seronegativepregnantdamwithoutdepopulationbythefollowingproceduresAvarietyofviralvaccines(virulent,attenuated,inacti-(Harriset al.1987):(1)bringinbreedingstockreplace-vated,andsubunit)androutesofadministrationmentsforthenext4–6months;(2)inthefaceofanout-(oral, intranasal,intramuscular,subcutaneous,andbreak,feedbackTGEVacutelyinfectedmincedpigletintramammary)(BohlandSaif1975;MoxleyandOlsonintestinessimultaneouslytoallpigsintheherd(includ-1989;SaifandBohl1979;SaifandJackwood1990;Saifingreplacementstock)toeliminatesusceptiblehosts,andSestak2006)havebeentestedforinductionoflac-shortenthetimethediseaseprogressesthroughthetogenicimmunity.Onlyoraladministrationoflivevir-herd,andensuremoreuniformexposurelevelsinallulentvirustopregnantsowsconsistentlystimulatedpigs;(3)maintainstrictall‐in/all‐outproductioninhighlevelsofprotectiveimmunityforthesowandfarrowingandnurseryunits;and(4)addsentinelseron-persistingTGEVIgAantibodiesinmilkthatpassivelyegativepigsabout2monthsafterclinicalsignsofTGEprotectedpiglets.disappearandmonitorthesepigsforseroconversiontoThegenerallypoorresultsfororalorintranasalvacci-TGEV.Potentialhazardsassociatedwithfeedbackcon-nationofsowsusingattenuatedTGEVstrains(MoxleytrolofTGEincludepossiblespreadofotherpathogenstoandOlson1989;SaifandBohl1979;SaifandSestakpregnantsowsandthroughouttheherd.2006)maybeattributedtothelimitedreplicationofOtherapproachestocontrolorterminateendemicmostattenuatedstrainsinthesow’sintestine(FrederickTGEincludethefollowing.First,pregnantseropositiveet al.1976).ThisresultsinlittleantigenicstimulationofsowscanbevaccinatedintramuscularlylateingestationintestinalIgAimmunocytesandcorrespondinglylittleorshortlyafterfarrowingwithliveattenuatedTGEVIgAantibodysecretioninmilk.Thus,thedilemmaisvaccinetoboostimmunity,increasemilkantibodylev-howtodevelopcommercialTGEVvaccinesthatareels,andmaintainlongerpassiveimmunityinsucklingcapableofstimulatingIgAinthegutofsows,butsuffi-pigs(SaifandSestak2006;Stepaneket al.1979).AlthoughcientlyattenuatedsoasnottoproducediseaseinthisproceduremayonlydelayonsetofTGEinexposednewbornpigs. 31Coronaviruses503ParenteralTGEVvaccinesinducedevenlowerorpassiveimmunizationwassuggestedbyfeedingtheinconsistentprotectionratesinTGEV/PRCVseronega-recombinantimmunoproteinscapableofinducingtiveswine.Theyhavetwomajordisadvantages:(1)TGEVVNantibodiestosowstoconferpassiveimmu-Vaccinatedswinedeveloplittleornogutimmunityandnitytopiglets(Bestagnoet al.2007).TheapproachmayoftengetsickwhenexposedtoTGEV,deprivingtheirbecosteffectivebyexpressingtheseproteinsinplantssucklingpigsofmilk.(2)ThelowtiterIgGandnoIgA(Mongeret al.2006).TGEVantibodiesinmilkofvaccinatedsowsfailtopro-VariouslevelsofVNantibodiesandprotectionwerevideoptimalpassiveprotectiontosucklingpigs.inducedusingeukaryoticvectorstoexpresstheTGEVSCurrentlyavailableparenterallyadministeredTGEVglycoproteinencodingtheglycosylation‐dependentanti-vaccinesmaybemoreeffectiveinboostingimmunityingenicdeterminants(sitesAandB)withorwithoutsitespregnantswinepreviouslyinfectedwithTGEVorPRCVCandD(Figure 31.3).Thebaculovirus‐orvacciniathanininitiatingimmunityinseronegativepregnantvirus‐expressedSglycoproteinofTGEVinducedlowswine.ThesevaccinesmaybeespeciallyusefulinherdstitersofVNantibodiesinserum,colostrum,andmilk,inwhichendemicTGEisaproblem(Stepaneket al.butlowornoprotection(Godetet al.1991;Huet al.1979).1985;Shoupet al.1997;Tubolyet al.1995).OnlySglyco-proteinconstructscontainingantigenicsiteAinducedTGEvaccinationof neonatalorweanedpigshighVNantibodytiters.SitesCandDinducedonlylowActiveimmunizationofsucklingorfeederpigscouldtiterVNantibodies,butinterestingly,theyprimedpigsbeimportantforcontrolofendemicinfections,espe-forsecondaryserumantibodyresponsesafterchallengeciallyinnewlyweanedpigs,inwhichTGEVinfections(Shoupet al.1997).resultinincreasedmortality.LiveattenuatedandSimilarfindingswereevidentinstudiesusingthesameinactivatedTGEVvaccineshavebeenlicensedinthebaculovirus‐expressedSconstructsadministeredIMtoUnitedStatesfororalorintraperitonealadministra-boostantibodyresponsesinsowsvaccinatedorallywithtion,respectively,shortlyafterbirth.However,theattenuatedTGEVvaccines:thepartialprotectionratespresenceofmaternalantibodiesinvaccinatedpigswerecomparablewithIMboostingwithattenuateddecreasedorcompletelysuppressed(Furuuchiet al.TGEVvaccine(Parket al.1998).Baculovirus‐expressed1978;Hesset al.1982;Lanzaet al.1995;Sestaket al.TGEVstructuralproteins(S,N,andM)coadministered1996)activeantibodyproductionfollowingoraladmin-IPwithE.colimutantLTadjuvantinducedTGEVIgAistrationofattenuatedTGEVvaccines.OtherantibodyresponsesassociatedwithreducedTGEVshed-approachesusingrecombinantTGEVproteinsdinginchallengedpigs(Sestaket al.1999b).(reviewedinnextsection)havebeenusedinattemptsRecentstudieshaveusedmolecularapproachestotoactivelyimmunizeyoungpigsagainstTGEV.developvectoredTGEVvaccinesandtesttheminpor-cineandmurinemodels.Ahumanadenovirusengi-RecombinantvaccineapproachesneeredtoexpresstheTGEVorPRCVSproteinsAmongthemajorstructuralproteinsofTGEV,theSpro-(Callebautet al.1996;Torreset al.1996;TubolyandteincontainsimmunodominantepitopesrecognizedbyNagy2001)elicitedvariableprotectionagainstTGEVVNantibodies.EpitopesforcontinuousdomainsmortalityandlittleprotectionagainstTGEVorPRCV(DelmasandLaude1990)wereincorporatedintosyn-infection.AnoralLactobacilluscasei‐basedvaccinetheticpeptidesderivedfromtheSprotein(Posthumusexpressingrepetitive(20Xand40X)peptidesoftheanti-et al.1991).However,apeptidecontainingthemajorTgenicDsiteofTGEVSproteininducedhumoralandT‐helpercellepitopederivedfromtheNproteinhasbeencell‐basedimmuneresponsesandTh17polarizationinreportedtocooperatewiththeSproteinforinvitromice(Jianget al.2014,2016).Additionally,anattenuatedinductionofTGEVantibody(Antonet al.1996).SalmonellatyphimuriumvectorexpressingTGEVNorToexpresstheTGEVS(orSepitopes),M,orNpro-MproteinsandarecombinantBacillussubtilisstrainteins,severalprokaryoticandeukaryoticsystemssuchasexpressingTGEVSproteininducedT‐cellproliferation,E.coli,Salmonella,adenovirus,vacciniavirus,poxvirus,antibodyandcytokineresponsesinmice,andantibodybaculovirus,DNAvectors,andplantswereusedresponsesinpigs,respectively(Mouet al.2016;Qing(Enjuaneset al.1992;Godetet al.1991;Gomezet al.et al.2016;Zhanget al.2016a).Yuanet al.(2015)2000;Menget al.2013;Parket al.1998;Shoupet al.1997;expressedtheAepitopeoftheSproteininswinepoxSmerdouet al.1996;Torreset al.1996;Tubolyet al.2000;virusanddemonstratedthatthisvaccineadministeredtoYuanet al.2015).Insomestudies(Torreset al.1996),butsowswasimmunogenicandprotectedpigletsagainstnotothers(Gomezet al.2000;Smerdouet al.1996;clinicaldisease.DNAplasmidsweregeneratedforPEDVTubolyet al.2000),protectiveantibodieswereinducedandTGEVforthedevelopmentofDNAvaccinesthatininoculatedanimalscorrelatingwithpartialprotectionwereimmunogenicinmice,butnottestedinpigs(Meng(Parket al.1998;Shoupet al.1997).Anovelapproachtoet al.2013). 504SectionIIIViralDiseasesAneffectiveTGEVvaccineshouldprimarilyelicitanspreadthroughoutNorthandSouthAmerica,Asia,andintestinalimmuneresponse(SaifandJackwood1990;Europe.SaifandSestak2006;VanCottet al.1993).FurtherThesituationcontinuestoevolve.Forexample,recom-improvementsofTGEVvaccinesmightbeachievedbybinantentericCoVsbetweenTGEVandPEDVhavetheuseofmucosaladjuvants/deliverysystemssuchasbeendetectedinItaly(2009–2012),inGermany(2012),immunostimulatingcomplexes(ISCOMs),vitaminA,andinEasternEurope(2016)(Akimkinet al.2016;probioticbacteria,biodegradablemicrospheres,orinfec-Belshamet al.2016;Boniottiet al.2016).tiousrecombinantTGEVclonesengineeredtoenhanceTGEVimmunogenicityandreducepathogenicityEtiology(Chatthaet al.2015;Enjuaneset al.2005).StudiesofTGEVinfectiouscDNAminigenomesindicatethatthisMorphologicandphysicochemicalpropertiesofPEDVapproachalsocanbeusedfortargeteddeliveryofimmu-(Figure 31.2c)aresimilartothoseofothermembersofnogensderivedfromotherpathogenstotheintestineorthefamilyCoronaviridae(Figure 31.2).Basedongeneticrespiratorytract.andantigeniccriteria,PEDVisincludedinthegenusAlphacoronavirustogetherwithbatcoronavirus(BtCoV)/512/2005,TGEV,PRCV,FECoV,FIPV,CCoV,andHCoV229E.BasedonphylogeneticanalysisofthePorcineepidemicdiarrheaviruscompletegenomes,theglobalPEDVstrainsaredividedintotwomajorgroups:theclassicalPEDVstrainsthatRelevancefirstemergedinthe1970sinEuropeandthePEDVIn1971,acuteoutbreaksofdiarrheainfeederandfinish-strainsappearedafter2010(Linet al.2016)(Figure 31.1).ingpigswereobservedinEngland(Oldham1972).TheTheemergingPEDVstrainsarefurtherdividedintodiseasespreadtootherEuropeancountries,andthe“non‐SINDEL”(mainlyhighlyvirulent)and“SINDEL”name“epidemicviraldiarrhea”(EVD)wasadopted.Insubgroups(Figure 31.1)becausetheformerandlatter1976,similaroutbreakswereobserved,butinswineofallcausesevereandmildPED,respectively,inthefieldandages,includingsucklingpigs(Wood1977)and,in1978,inexperimentalpigchallengestudies(see“Pathogenesis”).aCoV‐likeagentwasassociatedwiththeoutbreaksinTheSINDELstrainscontaininsertionsanddeletionspiglets(ChaseyandCartwright1978;PensaertanddesimilartotheclassicalPEDVstrainsintheS1subunitofBouck1978).ExperimentalinoculationswiththeBelgiantheSprotein(Vlasovaet al.2014).Theylikelyresultedisolate(CV777)revealeditsenteropathogenicityforpig-frommultiplerecombinationeventsbetweentheclassi-letsandgrowingpigs(DebouckandPensaert1980),andcalandemergingPEDVstrainsinAsia,perhapsrelatedthenames“porcineepidemicdiarrhea”(PED)andPEDtowidespreaduseofliveclassicalPEDVvaccinestrainsvirus(PEDV)wereadopted(Deboucket al.1982).Intheinswine.OtherminorPEDVvariantshavebeenreported,1970sand1980s,PEDVcausedwidespreadepidemicsine.g.USTC‐PC177,USA/OK10240‐8/2017,andJapaneseEurope,withseverelossesinsucklingpigs.Sincethen,TTR‐2strains,bearinglargedeletions(194–200aa)inPEDVhasbeenassociatedmoreoftenwithisolatedout-theN‐terminaldomain(NTD)oftheSprotein(Okabreaksandrecurrentdiarrheicproblemsinweanedandet al.2014;Suzukiet al.2015;Zhanget al.2018).Thefeederpigs.However,epidemicsalsooccurred,asinItaly197‐aadeletion(residues34–230)ofPC177strainin2005–2006.occurredduringVerocelladaptation,whereasthe194‐InAsia,PEDVepidemicswerefirstreportedin1982aadeletion(residues23–216)oftheTTR‐2strainandandoutbreakscontinuedthroughthe1990sand2000s.the200‐aadeletion(residues31–230)oftheOK10240‐8Thesituationchangedin2010whenPEDoutbreaksinstrainweredetectedinclinicalswinesamplesinJapanChinacausedbyhighlyvirulentPEDVstrainsresultedandtheUnitedStates,respectively.Unlikethealteredinthelossof>1millionpigletsin1year(Sunet al.tissuetropismseenforPRCV(enterictorespiratory),the2012).In2013,PEDVoutbreakswerereportedinthetwoPEDVstrains(PC177andTTR‐2)retainedtheirUnitedStates,likewisewithseverelosses(Stevensonenterictropism,butwithreducedvirulence(Linet al.et al.2013).2016;Suzukiet al.2016).TheinitialPEDVstrainsarereferredtoasclassicalAlthoughPEDVvariantshavedifferentinsertionsorPEDVstrains(Chenet al.2013).ThestrainsidentifieddeletionsintheSglycoproteinandvariationintheSgly-since2010areconsideredemergingPEDVstrains.coproteinofPEDVmayberelatedtopathogenesisandVariantsoftheemergingPEDVstrainscontaininginser-cross‐neutralizingactivity,thereappearstobeonlyonetionsanddeletionsintheSgene(“SINDEL”strains)PEDVserotype(Choudhuryet al.2016;Linet al.2016).werefirstdetectedintheUnitedStates(Linet al.2016;Thereisnocross‐neutralizationbetweenPEDVandWanget al.2014b).Bytheendof2016,theemergingTGEVorbetweenPEDVandPDCoV(Linet al.2015b;PEDVstrains,bothnon‐SINDELandSINDEL,hadMaet al.2016).However,alowdegreeofcross‐reactivity 31Coronaviruses505wasobservedbetweenPEDVandotheranimalalphac-(Puranavejaet al.2009).In2010,despitethewidespreadoronavirusantibodies.Forexample,aTGEVMAbrec-useofPEDVstrainCV777vaccines,severePEDVout-ognizedPEDVNprotein(Linet al.2015b),TGEVMillerbreaksduetonon‐SINDELstrainsoccurredinChinaantiserumreactedwithPEDVNprotein(Gimenez‐(Sunet al.2012,2016;Wanget al.2016a).Later,emerg-Lirolaet al.2017),TGEVandPRCVantiserareactedingSINDELstrainswerealsodetectedinChina(WangwithPEDVMprotein(Gimenez‐Lirolaet al.2017),andet al.2016a).minkalphacoronavirusantiserumreactedwithPEDVMSince2013,theemergingnon‐SINDELPEDVstrainsandNproteins(Haveet al.1992).havebeendetectedinotherAsiancountries/regionsVero(Africangreenmonkeykidney)cellssupporttheoutsideofChina,includingJapan(Masudaet al.2015),growthofPEDVinculturemediumsupplementedwithSouthKorea(Kimet al.2015),Vietnam(Vuiet al.2014),trypsin(Figure 31.4c).CPEconsistsofvacuolationandThailand(Cheun‐Aromet al.2015),Taiwan(Linet al.largemultinucleatedsyncytia(HofmannandWyler2014),andthePhilippines(Kimet al.2016).TheSINDEL1988).PEDValsogrowsinvariousswinecelllines,PEDVwasalsodetectedinJapanin2013(Suzukiet al.includingbladderandkidneycells(Shibataet al.2000;2015)andKoreain2014(Leeet al.2014).Wanget al.2016b),STcells(Liuet al.2015a),alveolarThefirsthighlyvirulentPEDoutbreakcausedbynon‐Smacrophagecellline3D4(ParkandShin2014),andINDELPEDVoccurredinswinefarmsintheUnitedsmallintestinalepithelialcells(IECs)(Caoet al.2015;StatesinApril2013(Stevensonet al.2013),followedbyConget al.2015).AsreviewedbyTeeravechyanet al.thedetectionofmilderPEDoutbreakscausedbytheS(2016),PEDVcanalsoreplicateinbatlungcelllineTb1‐INDELPEDVinJanuary2014(Wanget al.2014b).FromLu(Liuet al.2015a),duckIEClineMK‐DIEC(Khatri2013to2014,PEDVkilledapproximately7millionpig-2015),andhumanlivercelllineHuH‐7(Wanget al.letsintheUnitedStates.InJanuary2017,PEDVhad2016b).spreadto39USstatesandtoPuertoRico.PEDVhasalsopAPN,thecellreceptorusedbyTGEV,wasinitiallyspreadtoothercountries(e.g.CanadaandMexico)inconsideredtobetheputativereceptorofPEDVwiththeWesternHemisphere(Linet al.2016).PEDVhasnotsomesupportingevidence(Conget al.2015;Liet al.beenreportedinAfricaorAustralia.2007;NamandLee2010);however,somerecentstudiesDirectorindirectfecal–oraltransmissionisthemainarguethatpAPNmaynotbeafunctionalreceptorforrouteofPEDVtransmission.Contaminatedequipment,PEDV(Liet al.2017;Shiratoet al.2016).feedandfeedingredients,transportation,orpersonnelmayserveasvehiclesforPEDVtransmission(Deeet al.2014,2016;Schumacheret al.2016).EvidenceofPEDVPublichealthaerosoltransmissionhasbeenreportedinsome(AlonsoPEDVisonlyinfectiousforswineanddoesnotplayaet al.2014),butnototherstudies(Niederwerderet al.knownroleinpublichealth.2016).Inemergingnon‐SINDELPEDVexperimentallyinfected4‐week‐oldpigs,infectiousvirusexcretionassessedbyPEDVtransmissiontosusceptiblesentinelEpidemiologypigslasted14–16days(Crawfordet al.2015).However,ClassicalPEDVregularlycausedepidemicsinEuropeat42dayspost‐initialoralexposure,somepigsstillshedfrom1971untilthelate1980s,butreportsafter2000arePEDVRNAinfeces,illustratingdiscordancebetweenrare.AnepidemicinItaly(2005–2006)affected63herds,prolongeddetectionofPEDVRNAinfecesandthebutmortalitywaslargelyrestrictedtosucklingpigletstransmissionofinfectiousPEDVtosusceptiblepigs.(Martelliet al.2008).UntiltheemergenceofnewPEDAfteranoutbreakonabreedingfarm,PEDVcanoutbreaksin2014,PEDVwasnotconsideredimportant,becomeendemicthroughacycleofinfectionofconsecu-andtherefore,theprevalenceofclassicalPEDVinEuropetivelittersastheyloselactogenicimmunityatweaning.isunknown.ExceptforanoutbreakassociatedwiththeAlthoughastudyfromSouthKoreashowedaPEDVemergingnon‐SINDELstraininUkrainein2014,subse-infectionrateof9.75%inwildboars(Leeet al.2016a),quentoutbreaksinFrance,Germany,Belgium,Slovenia,theirroleinthemaintenanceandtransmissionofPEDVandtheNetherlandswereduetotheemergingSINDELisunknown.strains(Linet al.2016).InAsia,classicalPEDappearedinChinainthelatePathogenesis1970s,causingseriouslossesinmanyprovinces(Wanget al.2016a;Xuanet al.1984).PEDwasrecognizedinThepathogenesisofPEDisrelatedtotheageofpigsatJapanin1982(Kuwaharaet al.1988;Sueyoshiet al.1995;thetimeofinfection,virusstrainvirulence,inoculationTakahashiet al.1983)andKoreain1993(Chaeet al.routes,anddoses.2000;Hwanget al.1994;Kweonet al.1993),butisknownThePEDVpathogenesiswasfirststudiedinpigletstobepresentinIndia(Barmanet al.2003)andThailand(3daysofage)orallyinoculatedwiththeclassicalPEDV 506SectionIIIViralDiseasesCV777isolate(Coussementet al.1982;Deboucket al.TTR‐2andTC‐PC177strainsthathavealargedeletion1981)(Table 31.1).ClinicalsignswereobservedafterintheNTDoftheSproteinwasmildercomparedwith22–36hours.Viralreplicationoccurredmainlyinthethatoftheemergingnon‐SINDELPEDVstrains(Lincytoplasmofvillousepithelialcellsthroughoutthesmallet al.2016;Suzukiet al.2016).intestineasearlyas12–18hourspostinoculation(PI),TheinfectiousdosesofPEDVdifferfordifferentagespeakingat24–36hours.Infectionresultedindegenera-ofpigs:100‐to1000‐foldlessPEDVwasneededtoinfecttionofenterocytes,leadingtoareductioninthevillousyoungerpigscomparedwiththedoserequiredtoinfectheight/cryptdepth(VH/CD)ratiosfromthenormal7:13‐week‐oldpigs(Thomaset al.2015).Theinfectiousto≤4:1.ThepathogenicfeaturesofclassicalPEDVinthedoseofanemergingnon‐SINDELPEDVstrain(PC22A)smallintestineofpigletswereverysimilartothoseofwasaslowas0.1plaque‐formingunit(PFU)/pigin4‐TGEV,butsomewhatlesspronounced(Figure 31.5).day‐oldCesarean‐derivedcolostrum‐deprived(CDCD)PEDVreplicationwasalsoobservedinthecolonicepi-piglets(Liuet al.2015b).Dosesof0.1PFU/pigandtheliumwhereslightcelldegenerationwasseen1–10,000PFU/pigcauseddiarrheain40and100%pig-(Ducatelleet al.1982).Occasionally,PEDV‐positivelets,respectively.Thomaset al.(2015)comparedthecryptcellswerealsoobservedbyIHCorIFstaining,butinfectiousdosesforanotheremergingnon‐SINDELtheenterocyteregenerationcapacitywaspreservedPEDVstrain(USA/IN19338/2013)in5‐day‐oldand3‐(Deboucket al.1981;Sueyoshiet al.1995).Shibataet al.week‐oldpigs:0.056and0.56–5600TCID50/pigcaused(2000)showedthatSPFpigsinoculatedwithfieldPEDVdiarrheain25and100%ofneonatalpiglets,respectively,betweentheagesof2daysand12weeksdevelopedage‐andatleast100‐foldhigherdoses(56–5600TCID50/pig)dependentresistance.Thatis,mortalitywasonlycauseddiarrheain100%of3‐week‐oldpigs.However,observedin2‐to7‐day‐oldpiglets.Pathogenicfeaturestheinfectiousdoseforolderpigs,suchasfinisherpigs,ofPEDcausedbyclassicalPEDVstrainsdescribedinhasnotbeendetermined,butisexpectedtobehigherKoreaandJapanareverysimilartothosereportedinthanthatneededtoinfectweanedpigs,aswasobservedEurope(KimandChae2003;Sueyoshiet al.1995).forTGEV(WitteandWalther1976).Lohseet al.(2016)studiedPEDVpathogenicityin5‐DuringtheacutephaseofPEDVinfection,viralRNAweek‐oldpigsusingclassicalPEDVstrain(TCBr1/87,wasdetectedtransientlyintheserumofPEDV‐infectedP3),anemergingSINDELstraininGermany,andasucklingandweanedpigs(Chenet al.2016a;Junget al.non‐SINDELstrainintheUnitedStates.Unfortunately,2014,2015a;Lohseet al.2016;Suzukiet al.2016).PeaktheSINDELPEDVfailedtoinfectpigs.ComparedwithRNAtitersinserumwerelow(7–8log10GE/mL)com-theclassicalPEDV‐infectedpigs,thenon‐SINDELparedwithconcurrenthighpeakRNAtitersinfecesPEDV‐infectedpigshadmoresevereclinicalsignsand(11–12log10GE/mL)(Junget al.2015a).Whetherdetec-histopathologicalchanges,higherpeakviralRNAshed-tionofviralRNAinserumrepresentsinfectiousvirusdingtitersinfeces,andlongerdetectionofviralRNAinandtheroleofviremiainPEDVpathogenesisisunknown.serum.Theseresultssuggestedthattheemergingnon‐SIngeneral,PEDVRNAtitersareabout4–6log10higherINDELPEDVwasmorevirulentthanclassicalPEDV.thaninfectioustiters(PFUorTCID50)dependingondif-However,concernsrelatedtodatainterpretationincludeferentPEDVstrainsand/orthereal‐timeRT‐PCRassaysthefollowing:(1)TheBr1/87inoculumwastheVerocell(Junget al.2014;Songet al.2016;Thomaset al.2015).culture‐adaptedvirusatpassage3,whereasthenon‐SLowlevelsofPEDVRNAwerealsodetectedinotherINDELwasthewild‐typevirusfrompigsanditsinfec-tissues,suchasthelung,liver,spleen,andmuscleofpigstiousdosewasnotdetermined,sothediseaseoutcomeseuthanizedduringacutePEDVinfection(Chenet al.maybeduetodifferentinfectiousdoses.(2)Thenon‐S2016a;Lohseet al.2016;ParkandShin2014).However,INDELinoculumcontainedalowamountofrotavirusbybecausethebloodwasnotdrainedbeforecollectingeachconventionalRT‐PCR.Therefore,coinfectionwithtissue,theviralRNAwasmostlikelyfromblood,exceptPEDVandrotavirusmayinfluencediseaseseverity.forthelungs,wherePEDVantigensweredetectedbyGenerally,thepathogenesisandtheage‐dependentIHC(ParkandShin2014).Inthelaterstudy,theresearch-resistanceoftheemergingnon‐SINDELPEDVstrainsersfoundthatawild‐typeKoreanPEDVnon‐SINDELweresimilartothoseoftheclassicalPEDVstrainsstrainCNU‐091222‐01/2009replicatedinalveolar(Table 31.1)(Junget al.2014,2015a;Madsonet al.2014;macrophagesofinfectedpigs.BecausenoothershaveNiederwerderet al.2016;PensaertandMartelli2016;reportedthedetectionofPEDVinthelungs,whetherStevensonet al.2013).Comparedwiththeemergingthisisauniquecharacteristicofearlieremergingnon‐Snon‐SINDELPEDVstrains,SINDELPEDV‐infectedINDELstrains(pre‐2010)isunknownandneedstobepigletshadlowermortalityratesandlessseverehisto-investigated.Inaddition,PEDVRNAwasdetectedfrompathologicalchanges(mildervillousatrophy)andless40.8%(20/49)ofsowmilksamplesduringtheemergingantigeninthesmallintestine(Table 31.1)(Chenet al.PEDVepidemics(Sunet al.2012).TGEVreplicatedin2016a;Linet al.2015a).ThepathogenicityofPEDVthemammaryglandsofsowsinjectedintramammarily Table31.1Comparativepathogenesisof differentclustersof PEDVin experimentallyinfectedpiglets(youngerthan6daysof age).VerticallocationofLongitudinaldistributionPEDVofPEDVPigtype/age(day)atVillousatrophyOnsetofclinicalPEDVstrainInoculum/doseperpiginoculation(VH:CDratios)signs(hpi)VillousCryptD,J,ICReferencesClassicalCV777Fecalsuspension/4log10PIDCDCD/2–3Moderatetosevere22–36+++(entire)+D,J,I(cont)+Coussementet al.(1.5–4.2)(1982)SNUVR971496Cellculture(P3)/6.8log10Colostrum‐deprived/1Severe(1.1–3.3)12–36+++(entire)−D,J,I(cont)−KimandChaeTCID50(2003)Non‐SINDELIN19338Cellculture(P7)/0.056–5600Conventional/5Severe(1.2–1.7)24+++(entire)NRD,J,I(cont)NRThomaset al.(2015)TCID50PC22ACellculture(P3)/1–4log10CDCD,conventional/3–4Severe(0.8–2.3)<24+++(entire)+D,J,I(cont)+Liuet al.(2015b)PFUSINDELIowa106Fecalsuspension/10–12Conventional/4Moderatetosevere24–72++(entire)−D(patchy),J,I−Linet al.(2015)log10GE(1.4–5.4)(cont)IL20697Cellculture/5log10TCID50ConventionalwithmilkMildNR+/++NRD,J(NR),I(patchy)+Chenet al.(2016a)replacer/5Source:Thistableisadapted/updatedfromSaif(1989).ReproducedwithpermissionofTaylorandFrancis.PID,piginfectiousdose;TCID50,50%tissuecultureinfectiousdose;PFU,plaque‐formingunit;GE,genomicequivalent;CDCD,Cesarean‐derivedcolostrum‐deprived;SPF,specificpathogenfree;VH:CD,villousheight/cryptdepthratio;hpi,hours’postinoculation;D,duodenum;J,jejunum;I,ileum;cont,continuous;NR,notreported;−,+,++,and+++denotesnone,lessthan30%,30–60%,andmorethan60%ofvillousenterocytesthatwerepositiveforPEDVantigens,respectively.ChapterNo.:1TitleName:0004238433.INDDComp.by:MohamadabdulRasheethDate:06Mar2019Time:09:14:50PMStage:PrinterWorkFlow:CSWPageNumber:5070004238433.INDD50703/06/20199:15:22PM 508SectionIIIViralDiseaseswithliveTGEVduringlactation(SaifandBohl1983).LesionsWhetherPEDVreplicatesinthemammaryglandsofLesionshavebeendescribedinexperimentallyandnaturallysows,whetherthePEDVRNArepresentsinfectiousinfectedsucklingpigletsforclassicalPEDV(CoussementPEDV,orwhetherthePEDVRNAinmilkisfromtheet al.1982;KimandChae2003;Pospischilet al.1981;salivaoftheirinfectednursingpigletsisunclear.Sueyoshiet al.1995),emergingnon‐SINDEL(Chenet al.AlthoughsomePEDVstrainsmayreplicateatlowlevels2016a;Junget al.2015a;Madsonet al.2015;Stevensonet al.outsideoftheintestine,itremainsunclearwhetherit2013),andSINDELPEDVinfections(Chenet al.2016a;LincontributestoPEDVpathogenesis.et al.2015a).LesionsareconfinedtothesmallintestinethatPEDVinfectionresultsinmassivelossofenterocytesisdistendedwithwatery,yellowishfluid.Microscopically,andthemalfunctionofinfectedenterocytes,leadingtovacuolation,syncytia,andexfoliationofsmallintestinalmaldigestiveandmalabsorptivediarrhea(Coussemententerocytesoccurmainlyontheproximalvilli.Thesmallet al.1982;Deboucket al.1981;Junget al.2006).Duringintestinalvilliarereducedinlength(Figure 31.5d),andtheacutePEDVinfection,gutintegritywasreduced,leadingenzymaticactivityoftheintestineismarkedlydecreased.tolossofwaterintotheintestinallumenandhighThispathologyisverysimilartothatobservedinTGEandosmoticpressure(Annamalaiet al.2015).ThefollowingPDCoV(Figure 31.5).Nohistopathologicchangeshavebeenfactorsmaycontributetothemoresevereclinicalsigns,observedinthecolon,althoughPEDVantigenswerehighermortalityrates,andslowerrecoveryinPEDV‐detectedinvacuolatedcolonicepithelialcells(Chenet al.infectedneonatalpigletscomparedwithweanedpigs:2016a;Deboucket al.1981;Junget al.2014).1)Slowerturnoverofvillousenterocytesinneonatalpiglets(5–7days)comparedwith2–3daysin3‐week‐oldweanedpigs(Junget al.2015a;Moonet al.1975).Diagnosis2)Increasednumbersofintestinalstemcellsandprolif-Diagnosisshouldbemadebasedonbothclinicalsignsanderationofcryptcellsoccurredlater(3dayspost‐laboratorydetectionofviralRNA,viralantigens,orPEDV)inneonatalpigletsthaninweanedpigs(1dayincreasedPEDVantibodies.ForthedetectionofPEDVpost‐PEDV)(Junget al.2015a).RNA,themostwidelyusedlaboratorydiagnosticmethodis3)Deficiencyininnateimmunityinsucklingpigscom-RT‐PCR(Ishikawaet al.1997;Kimet al.2001;Kubotaet al.paredwithweanedpigs(Annamalaiet al.2015)(see1999;LiuandWang2016)orreal‐timeRT‐PCR(Kimet al.“Immunity”).2007;Wanget al.2014d;Zhanget al.2016b).Loop‐medi-atedisothermalamplification(LAMP)assays(RenandLiClinicalsigns2011;Yuet al.2015)havebeendevelopedforthedetectionPEDsharesmostclinicalfeatureswithTGEincludingofPEDVRNAbutareusedlessindiagnosticlaboratories.waterydiarrhea,vomiting,anorexia,anddepression.OnNewertechnologysuchasthespecificprimer‐independentbreedingfarms,pigsofallagesbecomesick.Morbiditymetagenomicsequencing(next‐generationsequencing)approaches100%inpiglets,butcanvaryinsows.Pigletscanbeusedtodeterminethenearlycomplete(lacking5′upto1weekofagemaydiefromdehydration,andmor-and3′ends)viralgenomesequencesfromclinicalspeci-talityrangesfrom50to100%.Olderpigsrecoveraftermens(Chenet al.2014;Marthaleret al.2013).Insituabout1week.Insows,diarrheaisvariable,andtheymayhybridizationcanbeusedtodetectPEDVRNAinfixedtis-onlyshowdepressionandanorexia.Infatteningpigs,allsues(KimandChae2000;Stadleret al.2015).pigsintheunitmayhavewateryfeceswithinaweekandDiagnosiscanbemadebydirectdemonstrationofoftenshowsevereanorexiaanddepression.PEDVand/oritsantigensusingIForIHCtestsontheThediseaseonabreedingfarmisself‐limitingandsmallintestinaltissuesofpigseuthanizedacutelynearstopswhenthepregnantsowsdeveloplactogenictheonsetofdiarrheaandpriortothedesquamationofimmunitytoprotecttheiroffspring.Theintervalenterocytes(Deboucket al.1981;Guscettiet al.1998;betweenonsetandcessationofthediseaseisgenerallyJunget al.2014;Stevensonet al.2013;Sueyoshiet al.3–4weeks,butmaybemuchlongerinlargebreeding1995)(Figure 31.6b).PEDVparticlescanbedemon-farmswithmultipleseparatedunits.AftertheacutestratedusingdirectEMorIEMoffecesofpigscollectedoutbreakhaspassed,diarrheamaypersistonthefarmacutelyafterdiarrheaonset.Virusparticlesaredifficultinweanedpigsandbecomerecurrent(Martelliet al.torecognizewhenthevirionspikesarelostornotclearly2008).PEDVmayalsobeinvolvedinamulti‐etiologicvisible.Furthermore,IEMmustbeappliedtodifferenti-diarrheasyndromeinfeederpigsappearing2–3weeksatePEDVfromTGEVandPDCoVbecausetheCoVsaftertheyenterthefatteningunits,particularlywhenhaveidenticalmorphology(Figure 31.2).thepigsoriginatefromdifferentsourcesandwhennewIsolationoffieldstrainsofPEDVfromintestinalcon-pigsarecontinuouslyaddedtothefatteningunit(vantents/homogenatesorfecesisdoneinVerocellsorinReethandPensaert1994).othercelltypes.Trypsintreatmentandblindpassages 31Coronaviruses509maybeneededbeforeCPEappears,butearlydetection11proteinshavebeenidentifiedasIFNantagonists,canbedonebyIFstaining(HofmannandWyler1988;whichincludebothORF1ab‐encodedNSproteins(nsp1,Shibataet al.2000).SuccessfulisolationofPEDVinVeronsp3,nsp5,nsp7,nsp14,nsp15,nsp16),structuralpro-cellsishigherwithintestinalcontents/homogenatesthanteins(E,M,N),andtheaccessoryproteinORF3(Dingwithfeces(Chenet al.2014;Okaet al.2014).et al.2014;Wanget al.2015;Zhanget al.2016c).Antigen‐captureELISAshavebeendevelopedforIdentificationofthevirus‐encodedIFNantagonistsanddetectionofPEDVantigensinfecesusingpolyclonalunderstandingtheirmechanismofactionmayleadtoantibodiesandMAbs(Callebautet al.1982;Carvajalnoveltherapeutictargetsandmoreeffectivevaccines.et al.1995),buttheyarenotwidelyused.PEDV‐infectedsucklingpigshadsignificantlylowerPairedserumsamplesarerequiredforserologicdiag-NKcellfrequencies,undetectableNKcellactivity,and−−+nosisofendemicPEDV.Recently,IgGandIgAantibodieslowerIFN‐γ‐producingCD3CD4CD8NKcellsintoPEDVweredetectedinoralfluids,suggestingtheymaybloodandileumcomparedwithPEDV‐infectedweanedbesuitabletomonitorpriorherdexposuretoPEDVpigs(Annamalaiet al.2015).Deficiencyininnate(Bjustrom‐Kraftet al.2016).PEDVantibodieshavebeenimmunefunctionofneonatalNKcellsmaycontributetodemonstratedwithindirectELISAsusingantigenscon-themoreseverePEDVinfectioninsucklingpigscom-sistingofcell‐cultivatedvirus(Carvajalet al.1995;paredwithweanedpigsasalsoreportedforTGEVinfec-HofmannandWyler1990;Kweonet al.1994;Thomastions(Derbyshireet al.1969).et al.2015),orSandNviralproteinsextractedfromInflammatoryresponsesplayasignificantroleintheinfectedVerocells(Knuchelet al.1992;Ohet al.2005),orpathogenesisofentericCoVs.Comparedwithsucklingexpressedinbacteriaorusingmammalianexpressionpigs,weanedpigshadadelayedproinflammatorysystems(Chenet al.2016b;Gerberet al.2014;GerberandcytokineinductionthatcoincidedwiththedelayedonsetOpriessnig2015;Houet al.2007;Okdaet al.2015;Paudelofinfection,disease,andsheddingofPEDVRNAinfeceset al.2014;Wanget al.2015).Blockingandcompetitive(Annamalaiet al.2015).Toll‐likereceptor2(TLR2),ELISAshavealsobeendevelopedforthedetectionofTLR3,andTLR9maycontributetoNF‐κBactivationinPEDVantibodiesusingMAbsorpolyclonalantibodiesasresponsetoPEDVinfectioninsmallIECsinvitro(Caocompetitiveantibodies(Carvajalet al.1995;Okdaet al.et al.2015).TheviralproteinsEandNupregulatedIL‐82015;vanNieuwstadtandZetstra1991).SerumIgGanti-expressionbyinducingendoplasmicreticulumstressbodiesagainsttheNproteinsofPEDVcanbedetectedbyandsubsequentactivationoftheNF‐κBpathway(Xu9–14DPI,withtiterspeakingaround21DPIandthenet al.2013a,b).declininggradually(Okdaet al.2015).Recently,afluores-HumoralimmuneresponsestoPEDVinfectionarecentmicrosphereimmunoassay(FMIA)wasdevelopedverysimilartothosedescribedforTGEV[reviewedin(Gimenez‐Lirolaet al.2017;Okdaet al.2015),butitisnotTGEVsection(Chatthaet al.2015;SaifandSestakwidelyusedduetotheneedforspecificequipment.The2006)].VNantibodiesaredetectableintheserum,butVNtestinVerocellsiscriticaltoassessVNantibodiestomaynotplayanimportantrolebecauseprotectionPEDV(Ohet al.2005;Okdaet al.2015;Paudelet al.2014;againstentericdiseaseisprimarilydependentontheThomaset al.2015).TheseserologicalassayshavebeenpresenceofsIgAantibodiesintheintestinalmucosawidelyusedtomonitorpriorexposuretothevirusandto(Chatthaet al.2015;Langelet al.2016).Immunitymayevaluatetheefficacyofvaccines.notbelonglasting,butarapidanamnesticresponsePEDVinfectionsmustbedifferentiatedfromTGE,uponreexposuremaypreventreoccurrenceofSeCoV,andPDCoV,whichinthecaseofacutediarrheadisease.inswineofallagescanonlybedonethroughlaboratoryAlthoughPEDoccursinpigsofallages,pigletsuptotesting.SinceSeCoVsarerecombinantsbetweenTGEV1weekofagemayexperiencehighmortalityandneedto(backbone)andPEDV(mainlySprotein),onlyassaysbeprotectedbymaternalantibodies,especiallyVNandtargetingbothTGEV(anygenesexceptforSgene)andsIgA,viacolostrumandmilkfromimmunizeddams.PEDV(Sgene)fragmentscanidentifythoseviruses.InThemechanismsoflactogenicprotectiondescribedforneonatalcolibacillosisorrotavirusdiarrhea,adultani-TGEVinfectionapplytoPEDaswell(reviewedinTGEVmalsarenotaffected,andsickpigsusuallyarebornfromsection[Chatthaet al.2015;Langelet al.2016]).giltsoryoungsows.LaboratorytechniquesmustbeusedLactogenicimmunityisinducedinsowsbyintestinaltodifferentiatePEDfromothercausesofdiarrheaininfectionwithPEDV,whichthenactivatesthegut–weanedorfeederpigs.mammary–sIgAaxis.PigsloselactogenicprotectionatweaningandsoonbecomesusceptibletoPEDVinfec-tion.Cell‐mediatedimmunitylikelyplaysaroleinviralImmunityclearance,butthereisnoexperimentaldataonthistopic.EvidenceshowsthatPEDVhastheabilitytoevadehostPEDVmaypersistonthefarminsusceptiblepigsaspartIFNresponses.Of21PEDV‐encodedproteins,atleastofrecurringweaningdiarrheaafteranacuteoutbreak. 510SectionIIIViralDiseasesPreventionand controlPreviously,PDCoVhadbeenreportedinthefecesofdomesticpigsinChinain2012(Wooet al.2012),butthePEDVishighlycontagious,andstrictsanitationandroleofthevirusasanentericpathogenwasunclearatbiosecurityarerequiredtopreventvirusentrance.Dothattime.PDCoVhasspreadnationwideintheUnitednotcomminglesourcesorgroupsofpigs;ensurefacili-States(Wanget al.2014c)andcauseddeathsamongtiesandtransportationvehiclesarethoroughlywashed,sucklingpigs(Anon2014).Experimentalstudiesverifieddisinfected,anddriedbeforepigsenter;anddonotsharethatUSPDCoVisolatesareenteropathogenicinnursingboots,clothing,orequipmentbetweendifferentagespigs,asevidentbyacute,waterydiarrheaandsevereof pigs.intestinallesions(Figure 31.5cande)(Chenet al.2015;Feedback(intentionalexposureofsowstovirususingJunget al.2015b).However,theclinicalimpactanddis-fecesorsmallintestinesfromacutelyinfectedpiglets)easeseverityofPDCoVislessthanthatofepidemicwillstimulatelactogenicimmunityinthesowherd,PEDVandTGEV(Anon2014).reduceclinicalsignsinpiglets,andshortenclinicalout-SincethePDCoVoutbreaksintheUnitedStates,ithasbreaks.Feedbackmayalsobeusedinthenursery,grower,alsobeenidentifiedonswinefarmsinCanada,Korea,orfinisherpigs,butnose‐to‐nosecontactandfecal–oralChina,Thailand,Vietnam,andLaosPDR,butinCanadaspreadwillquicklycontaminatetheentirefacility.ItandKorea,PDCoVfailedtospreadnationwide(Leeet al.shouldberecognizedthatotherpathogenspresentin2016b;Marthaleret al.2014b).DifferentialdiagnosisofclinicallyaffectedanimalscanbetransmittedviathePDCoV,PEDV,andTGEViscriticaltocontrolCoVdiar-feedbackprocess.rheasinpigfarms,especiallyintheregionswheretheseInEurope,thediseasehasbeenofinsufficienteco-CoVshaveemergedorreemerged.nomicimportancetodevelopvaccines.InChina,vari-ousinactivatedand/orattenuatedbivalent(TGEVandPEDV)ortrivalent(TGEV,PEDV,androtavirusstrainEtiologyNX)vaccinesbasedontheclassicalPEDVstrainshavePDCoVbelongstothegenusDeltacoronavirusofthebeenavailableasearlyasin1999(Maet al.1995;SunfamilyCoronaviridae.Morphologicandphysico-et al.2016;Wanget al.2016a).However,classicalPEDVchemicalpropertiesofPDCoVaresimilartothoseofvaccineswerenotefficaciousinprotectingpigsagainstothermembersinthefamilyCoronaviridaethehighlyvirulentnon‐SINDELPEDVinfection(Li(Figure 31.2).et al.2012;Sunet al.2012;Wanget al.2013)andnewerAllglobalPDCoVstrainsoverallsharehighnucleotidevaccines(e.g.abivalentinactivatedPEDVandTGEVidentities(Zhang2016)(see“Epidemiology”).However,vaccinebasedontheemergingnon‐SINDELPEDVacomprehensivegeneticanalysisofglobalstrainsstrainAJ1102)haveappearedinthemarket.InJapan,arevealedthatUS/KoreanPDCoVstrainsclusteredcommercialattenuatedPEDVvaccinebasedontheclas-together,Chinesestrainsclusteredseparately,andThaisicalPEDV83P‐5strainhasbeeninusesince1997(Satostrainsformedanothercluster(Zhang2016)(Figure 31.1).et al.2011).InKorea,attenuatedvaccinesbasedonChinesePDCoVstrainshadmultiplemutationordele-strainsKPEDV‐9(Kweonet al.1999)orDR13(SongtionsitesintheirS,NSP,or3′untranslatedregion(UTR)et al.2007)werecommercializedin1999and2004,genes,whereasthesemutationswerenotfoundintherespectively.Reportedly,notallsowsgiventhevaccinesgenomesofUSPDCoVstrains(Wanget al.2016c).developedprotectivelactogenicimmunity(Songet al.Severalinvestigatorsreportednocross‐reactivityof2015a).TwocommercialvaccinesareavailableinthePDCoVwithantibodiestoeitherPEDVorTGEV(ChenUnitedStates.Thefirstvaccine(June2014)wasdevel-et al.2015;Maet al.2015).However,anotherstudyopedusingareplication‐deficientVenezuelanequinereportedantigeniccross‐reactivitybetweenUSPDCoVencephalitisviruspackagingsystemtoexpresstheandPEDVstrains,possiblysharingatleastoneepitopePEDVSprotein(Crawfordet al.2016).Thesecondvac-ontheirNproteins(Maet al.2016).cine(September2014)isaninactivatedwholevirusvac-LLCporcinekidney(LLC‐PK)andSTcellssupple-cinebasedonanemergingnon‐SINDELPEDVstrainmentedwithexogenoustrypsinorpancreatinsupport(Crawfordet al.2016).theisolationandserialpropagationofPDCoVincellculture(Huet al.2015).TheCPEconsistedofenlargedandroundedcellsandthencellshrinkageandPorcinedeltacoronavirusdetachment.RecentstudieshavedemonstratedthatPDCoVRelevanceemployspAPNasamajorreceptorforcellularentry,InFebruary2014,acuteoutbreaksofdiarrheaassociatedalthoughitremainstobeelucidatedwhetheranotherwithPDCoVwereobservedinsowsandtheirpigletsonreceptorisinvolvedinPDCoVinfection(Liet al.2018;fiveOhiofarmsintheUnitedStates(Wanget al.2014a).Wanget al.2018;Zhuet al.2018). 31Coronaviruses511PublichealthTheThaiPDCoVstrainswerehighlysimilartoeachotherbutformedanovelphylogeneticclusterseparatedThereisnoevidencethatPDCoVisinfectiousforfromUSandChinesePDCoVs(Janetanakitet al.2016;humansorplaysaroleinpublichealth.Saeng‐Chutoet al.2017).PDCoVsidentifiedinLaoPDRweremorecloselyrelatedtoThaiPDCoVs,whereasPDCoVsdetectedinVietnamweremorecloselyrelatedEpidemiologytoUSPDCoVs(Saeng‐Chutoet al.2017).TheancestraloriginofPDCoVisunclear,butconsider-Fecal–oralisthemainPDCoVtransmissionroute.ingthatPDCoVemergedrecently,PDCoVmaybeFecesand/orvomitusandothercontaminatedfomitesincompletelyadaptedtopigs.Molecularsurveillanceinaremajortransmissionsourcesofthevirus.BasedonChinaandHongKongin2007–2011detectedDCoVsexperimentalfindings(Huet al.2016;Maet al.2015;onlyinpigsandwildbirds(Wooet al.2012).However,Zhang2016),diarrheaininfectedpigletswasobservedDCoVswerepreviouslyisolatedfromrectalswabsofforapproximately5–10days,withpersistingviralRNAsmallmammals,includingAsianleopardcatsandsheddingforupto19–28daysinfecesandforuptoChineseferretbadgers,atChineseliveanimalmarketsin42daysinoralfluids.2005–2006(Donget al.2007).TheirhelicaseandSgeneswerecloselyrelatedtothoseofPDCoV.ThedatasuggestPathogenesisthepotentialinterspeciestransmissionofDCoVsbetweenthesewildsmallmammals,pigs,andbirds.AThepathogenesisofPDCoVhasbeenstudiedinGnorrecentstudyalsorevealedthatPDCoV‐inoculatedgno-conventionalpigletsorallyinoculatedwithUSand/ortobiotic(Gn)calvesexhibitedanacuteinfectionwithoutChinesePDCoVisolatesat5–21daysofage(Chenet al.diseaseorintestinallesions,butwithpersistingfecal2015;Donget al.2016;Huet al.2016;Junget al.2015b;viralRNAsheddingandseroconversion(Junget al.Maet al.2015).Clinicalsigns(diarrheaand/orvomiting)2017).Consequently,thepotentialabilityofPDCoVandoccurredat1–3DPI.ReplicationofPDCoVisconfinedotherDCoVisolatesfrombirdsorsmallmammalstotothesmallandlargeintestinalepithelia.PDCoV‐infectdifferentspeciesshouldbeinvestigated.infectedenterocytesrapidlyundergoacutenecrosisInFebruary2014,PDCoVwasdetectedinUSswine.(Junget al.2016a),leadingtomarkedvillousatrophyinAmong42fecalorintestinalsamplescollectedfromthesmallintestine(Figure 31.5cande),butnotinthediarrheicsowsandpigletsonfiveOhiofarms,39(92.9%)largeintestine.Duringacuteinfection,PDCoVantigenswerepositiveforPDCoVbyRT‐PCR(Wanget al.2014a).aredetectedmainlyinthevillousepitheliumoftheatro-ThePDCoVOhiostrainHKU15‐OH1987hada99%phiedmid‐jejunum(Figure 31.6c)toileumand,toanucleotideidentitytothetwoprototypestrainsoflesserextent,induodenum,proximaljejunum,andPDCoV,HKU15‐44andHKU15‐155,reportedincecum/colon.Occasionally,afewPDCoVantigensareChinesepigsin2012.Duringasimilarperiod,geneticallydetectedincryptepithelialcellsofthejejunumandsimilarstrains,USA/IA/2014/8734andSDCV/USA/ileum(Junget al.2016a)andimmunecellsintheintesti-Illinois121/2014,wereidentifiedbyotherUSdiagnosticnallaminapropria,Peyer’spatches,andmesentericlaboratories(Liet al.2014;Marthaleret al.2014a).lymphnodes(Huet al.2016).Frequently,acuteviremiaAmongPDCoV‐positivepremises,coinfectionwithwithlowPDCoVRNAtitersinserumwasobservedPEDViscommon(Zhang2016).TheoriginofPDCoVin(Chenet al.2015;Huet al.2016;Maet al.2015).AfterUSswineisunknown,althoughtherewasserologicandpigsrecoveredfromclinicaldisease,largeramountsofvirologicevidencesuggestingitspresenceintheUnitedPDCoVantigensweredetectedinthegutlymphatictis-StatespriortoitsdetectioninFebruary2014(Sinhaet al.sues(Huet al.2016).PDCoVantigenswerenotdetected2015;Thachilet al.2015).inotherorgans,includingtherespiratorytractofpigsPDCoVhasalsobeenreportedinCanada,Korea,(Junget al.2016b).However,byreal‐timeRT‐PCR,mainlandChina,Thailand,Vietnam,andLaoPDR(DongPDCoVRNAcouldbedetectedinlowtomoderateet al.2015;Janetanakitet al.2016;Leeet al.2014;quantitiesinmultipleorgans,possiblyduetoviremiaLorsirigoolet al.2016;Marthaleret al.2014a;Saeng‐(Chenet al.2015;Maet al.2015).Chutoet al.2017;Songet al.2015b).TheKoreanPDCoVstrains(KUN14‐04,SL2,andSL5)hadhighnucleotideClinicalsignsidentities(98.7–99.2%)toUSPDCoVstrains(Leeet al.2014,2016b).InmainlandChina,coinfectionswithClinicalsignsofPDCoVinfectioninsucklingandolderPDCoVandPEDVwerecommon(Donget al.2015;Songpigsaresimilar,butmilder,thanthoseofPEDVandet al.2015b).ChinesePDCoVstrainshad≥98.6%nucleo-TGEVinfections.Insucklingpiglets,PDCoVinducestideidentitieswitheachotherand≥97.1%nucleotideacute,waterydiarrhea,frequentlyaccompaniedbyidentitieswiththeglobalPDCoVstrains(Zhang2016).vomiting,leadingtodehydration,lossofbodyweight, 512SectionIIIViralDiseaseslethargy,anddeath.Experimentally,theonsetofdiar-atrophicenteritisintheproximaljejunumtoileumrheacoincidedwith,orwasdetected1–2dayslaterthan,(Figure 31.5cande),occasionallyaccompaniedbymildthefirstdetectionofviralRNAinfeces(Junget al.2015b;vacuolationofthesuperficialepithelialcellsinthececumMaet al.2015).andcolon(Junget al.2015b).Novillousatrophyorhis-Diarrheaisprobablyaconsequenceofmalabsorptiontologiclesionswereevidentintheduodenum,whichduetomassivelossofabsorptiveenterocytes,resultingcoincidedwithfewPDCoVantigen‐positiveduodenalindecreasedbrushbordermembrane‐bounddigestiveepithelialcells(Chenet al.2015;Junget al.2015b).enzymes,similartoPEDVinfection(Junget al.2006).Duringacuteinfection,vacuolatedenterocytesormas-Mildvacuolationobservedintheinfectedcolonicepi-sivecellexfoliationwasseenonthetipsortheentirevillithelialcellsmayinterferewiththereabsorptionofwaterinthejejunumandileum.Atrophiedvilliwerefrequentlyandelectrolytes(Junget al.2015b).Dehydrationisalsofusedandcoveredwithadegeneratedorregeneratedexacerbatedbyvomiting.flattenedepithelium.Infiltrationofinflammatorycells,SeronegativepigsofallagesaresusceptibletoPDCoVsuchasmacrophages,lymphocytes,andneutrophils,infection.Onseronegativefarrowingfarms,morbiditywasevidentinthelaminapropria.Nolesionswereseencanreachupto100%inpigletsbutcanvaryinsows.inotherorgans.BasedonfieldobservationsinUSswinein2014(Anon2014),PDCoVinfectioncausedanumberofdeaths(upDiagnosistoa40%mortality)amongsucklingpigs.Similarly,PDCoVdiarrheaoutbreaksinbreedingfarmsinChinaThediagnosticapproachesdescribedearlierforTGEVandThailandresultedin64–80%mortalityamongsuck-andPEDValsoapplytoPDCoVdiagnosis.Laboratorylingpiglets.PDCoVinfectionismoresevereandmoretechniquesshouldbeusedtodifferentiatePDCoVinfec-likelytoresultinmortalityinpigletsascomparedwithtionfromPEDV,TGEV,androtavirusdiarrheainpigs.olderpigs.Onmanyfarms,morbidityandmortalitymayDefinitivediagnosisofPDCoVinfectionincludesdetec-beaffectedbycoinfectionswithotherentericviruses,tionofPDCoVRNAorantigensinthefecesorintestinalsuchasPEDVandrotavirus(Marthaleret al.2014b;tissuesfromdiarrheicpigs.DiagnosiscanbemadebySonget al.2015b).Thediseaseonbreedingfarmsisself‐RT‐PCRassaysthattargetaconservedregionofPDCoVlimitingandstopswhenpregnantsowsdeveloplacto-MorNgenes(Marthaleret al.2014b;Wanget al.2014a;genicimmunitytoprotecttheiroffspring.Zhanget al.2016b),IForIHCusingvirus‐specificMAbsPDCoVinfectionsharesseveralclinicalfeatureswithorpolyclonalantibodies(Chenet al.2015;Junget al.TGEVandPEDVinfections,buttheviruslikelyspreads2015b;Maet al.2015),andinsituhybridization(Jungmoreslowlyamongpigs,possiblyduetoitsloweradap-et al.2015b).Areal‐timeduplexRT‐PCRassayfordetec-tationtopigs.RelativetoPEDVinfections,PDCoV‐tionofPDCoVand/ordifferentiationofthevirusfrominfectedpigsshedlessPDCoVRNAinthefeces(JungPEDVinintestinesandfeceswasdeveloped(Zhanget al.et al.2015b),indicatinglowerreplicationofPDCoVin2016b).theintestineofpigs.ThisaspectofPDCoVinfectionmayDirectEMcanbeusedtodemonstratePDCoVparti-beacontributingfactortoitslowermortalityinnursingclesinfecescollectedfromdiarrheicpigs(Figure 31.2d),piglets,ascomparedwithPEDVinfections.butIEMusinghyperimmuneorconvalescentseraisessentialtodifferentiatePDCoVfromPEDVorTGEV(Junget al.2015b).IsolationofPDCoVfromfecesorLesionsintestinaltissueswasattemptedinLLC‐PKorSTcells,Lesionshavebeendescribedinsucklingpigletsexperi-butthesuccessratewaslowexceptforafewstrains(OH‐mentallyandnaturallyinfectedwithUS,Chinese,orFD22)(Huet al.2015).SerologicdiagnosisofPDCoVThaiPDCoVstrains(Chenet al.2015;Donget al.2016;canbeconductedbyIFA,VN,andELISAassays.IsotypesHuet al.2016;Janetanakitet al.2016;Junget al.2015b;ofPDCoVantibodiesinserumandmilkcanbequanti-Maet al.2015;Wanget al.2016c).LesionsresembletatedbyELISAusingantigensconsistingofcellculture‐thoseobservedinTGEVandPEDVinfectionsgrownvirus(Maet al.2016)orS1andNviralproteins(Figure 31.5),butareusuallylessextensive.(Okdaet al.2016;Suet al.2016;Thachilet al.2015).GrosslesionsarelimitedtothegastrointestinaltractandarecharacterizedbythinandtransparentintestinalImmunitywalls(proximaljejunumtocolon)withaccumulationoflargeamountsofyellowfluid.ThestomachisfrequentlyTheimmuneresponsesofpigstoPDCoVinfectionarefilledwithcurdledmilk.Thetransparencyandfragilitylargelyundefined,buttheyarelikelysimilartothoseofaffectedintestinesaremilder,ascomparedwithPEDVdescribedearlierforTGEVandPEDV.Huet al.(2016)andTGEVinfections.Histologicallesionsarecharacter-reportedthedevelopmentofPDCoVantibodiesinserumizedbyacute,multifocaltodiffuse,mildtosevereofPDCoV‐infectedpigs(Huet al.2016).Gnpigsorally 31Coronaviruses513inoculatedwiththeoriginalortissueculture‐grownEtiologyPDCoVstrainOH‐FD22haddetectableserumIgG,IgA,pHEVbelongstothegenusBetacoronavirusofthefam-andVNantibodiesby14DPIthatpeakedat24DPI,whenilyCoronaviridae(Figure 31.1).Thevirusagglutinatesthepigshadrecoveredfromclinicaldiseaseandfecalerythrocytesofmice,rats,chickens,andseveralothervirusshedding.WhilePDCoVinfectionisepidemic,animals.ThenaturalhostofpHEVisthepig.AlthoughyoungpigletscanbeprotectedbytransferofmaternalpHEVmayshowdifferentclinicalmanifestations,thereantibodiesviacolostrumandmilkfromimmunedams,isonlyoneserotype.Age‐relatedsusceptibilityoftheespeciallyIgAandVNantibodiesthatneutralizePDCoVpigs,possiblestraindifferencesinvirulence,andvaria-inthegut.Lactogenicimmunityisexpectedtobestronglytioninpathogenesismayinfluenceclinicalsigns.pHEVinducedinsowsbyoralinfectionwithPDCoV,whichshowsastrongtropismforneuraltissuesinpigs.thenactivatesthegut–mammarylink,asdescribedLikewise,thevirusdisplaysneurotropisminmiceandearlierforTGEV(Bohlet al.1972;Saifet al.1972).Wistarrats(Hiranoet al.2004;Yagamiet al.1993).Invitro,onlyporcinecellsaresusceptibletopHEV.Preventionand controlpHEVwasfirstisolatedinprimaryPKcellswithCPEcharacterizedbysyncytia(Greiget al.1962).pHEVwasThepreventionandcontrolmeasuresdescribedearlieralsoshownbyIFstainingtopropagateinotherporcineforTGEVandPEDVinfectionsalsoapplytoPDCoVcellcultures:adultthyroidgland,embryoniclung,andinfection.TherearenotreatmentsorvaccinestocontrolcelllinessuchasST,PK‐15,IBRS2,SK,SK‐K,andKSEK6PDCoVinfection.Preventiveortherapeuticantibioticswineembryokidney.therapycanbeimplementedifthereisconcurrentinfec-tionwithentericbacterialpathogens.Symptomatictreatmentofsucklingpigswithdiarrheaincludesintra-PublichealthperitonealadministrationofbicarbonatefluidsandfreePigsaretheonlyspeciesknowntobesusceptibletoaccesstowatertoalleviateacidosisanddehydration.IfpHEVandpHEVhasnopublichealthsignificance.mortalityissubstantialamongsucklingpiglets,feedbackmethods(intentionalexposureofpregnantsowstovirus‐positivemincedintestinesfromacutelyinfectedEpidemiologypiglets)willstimulatelactogenicimmunityandreducethehighmortalityifadministeredtosowsatleast2weeksSerologicsurveys(1960–1990)revealedthatpHEVpre‐farrowing.DuringPDCoVepidemics,high‐levelinfectioninswineoccursworldwideandisendemicinbiosecurityprocedurestoreducePDCoVtransmissionbothbreedingandfatteningswine(Pensaert2006).Theviacontaminatedfomitesareessential.presenceofpHEV,asdetectedbyisolationorserology,wasreportedinEurope,intheWesternHemisphere(UnitedStates,Canada,Argentina),inAsia(Japan,HemagglutinatingTaiwan),andinAustralia.encephalomyelitisvirus(vomitingpHEVismaintainedinswinepopulationsbyinfectingsuccessivegroupsofpigsafterreplacementorweaning.and wastingdisease)Thevirusisexcretedoronasally(Hiraharaet al.1989;PensaertandCallebaut1974)for8–10days.TransmissionRelevanceoccursvianasalsecretions,vianose‐to‐nosecontact,In1962,Greigandcoworkersisolatedaviralpathogenandaerogenically.Persistentviruscarriersarenotknownfromthebrainsofsucklingpigswithencephalomyelitistoexist.inCanada.Designatedhemagglutinatingencephalomy-Generally,pigswillonlydevelopdiseasewhentheyelitisvirus(HEV),theviruswaslaterclassifiedasaCoVbecomeinfectedoronasallypriorto3–4weeksofage(Greiget al.1971).In1969,anantigenicallyidenticalandiforiginatingfromnonimmunemothers(AppelviruswasisolatedinEnglandfromsucklingpigsshowinget al.1965).PigswithmaternallyderivedpHEVantibod-anorexia,depression,vomiting,andstunting,butwith-iesthatpreventthevirusfromreachingneuraltargettis-outsignsofencephalomyelitis(Cartwrightet al.1969).suesareclinicallyunaffectedwhenexposedtopHEVTheconditionwascalledvomitingandwastingdisease(Appelet al.1965).Pigsinfectedatlateragesnormallydo(VWD).Bothformsofthediseasewereexperimentallynotdevelopclinicaldisease.SincepHEVisendemicinreproducedbyMengelingandCutlip(1976)usingiso-mostswinepopulations,mostsowsareimmuneandlatesfromthesamefarm.pHEViswidespreadamongprotecttheiroffspringbymaternalantibodies.Thus,swine,buttheinfectionisgenerallysubclinical,althoughclinicaloutbreaksarerareandusuallyoccurinlitterssomeoutbreaksmaycauselosses(Alsop2006;Quirogafromnonimmunemothers,oftenfirst‐paritysows.Threeet al.2008).outbreaksarenotable.In2001,pHEVwasisolatedfrom 514SectionIIIViralDiseasesnewbornandearlyweanedpigswithvomitingandpos-diseaseonset,butreturnstonormalin1–2days.TheteriorparalysisonaCanadianfarm(Sassevilleet al.incubationperiodfortheappearanceofmorespecific2001).Alsop(2006)describedaclinicallydiagnosedout-signsis4–7days.Twomainclinicalmanifestationsasso-breakofVWDin2002ina650‐sowgeneticnucleusciatedwithpHEVneurotropismarepossibleinpigsherd.Quirogaet al.(2008)describedaVWDoutbreakbelow3–4weeksofage:(1)typicalVWDwithfrequentwithmotordisordersinArgentinain2006.Itoccurredinvomitingleadingtodeathorsubsequentwastingand(2)athree‐siteherdwith6,000sowswherethebreederacuteencephalomyelitiswithmotordisorders.However,stockconsistedof55%giltsandfirst‐orsecond‐paritysignsofbothclinicalformsmayoccurinthesameherdsows.duringanoutbreak.ForVWD,clinicalsignsarerepeatedretchingandvomiting.Pigsstartsuckling,butwithdrawfromthesowPathogenesisandvomitthemilk.ThepersistentvomitingandThetypeandseverityofclinicalsignsvaryandarerelateddecreasedfoodintakeresultsinconstipationandarapidtoage,possibledifferencesinvirusvirulence(Mengelingdeclineofcondition.NeonatallyinfectedpigsbecomeandCutlip1976),andthecourseofviralpathogenesis.severelydehydratedafterafewdays,exhibitdyspneaandTheprimarysiteofreplicationofpHEVinpigsisthecyanosis,lapseintocoma,anddie.Olderpigslosetheirrespiratorytract(AndriesandPensaert1980b;Hiraharaappetiteandbecomeemaciated.Theycontinuetovomit,et al.1987;Mengelinget al.1972).IFstainingrevealedalthoughlessfrequentlythanintheacutestage.Wasting,thatepithelialcellsofnasalmucosa,tonsils,lungs,andoftenwithdistensionofthecranialabdomen,maysomeunidentifiedcellsinthesmallintestinewereappear.This“wasting”statepersistsforseveralweeksinfected.Primaryreplicationmayresultinmildorsub-andmaybepostweaning,requiringeuthanasia.Duringclinicalsigns.theacutestageofVWDoutbreaks,somepigsmayshowExperimentalstudiesincolostrum‐deprivedpigletsneurologicsigns,suchasabnormalgait,dullness,trem-inoculatedoronasallywithpHEVprovidedinsightintoors,andnystagmus.pHEVpathogenesis(AndriesandPensaert1980a).FromAttheherdorfarrowingunitlevel,morbidityvariestheprimarysitesofreplication,thevirusspreadviathegreatlyandprobablydependsontheproportionofnon-peripheralnervoussystemtotheCNSviadifferentimmuneneonatallitterspresentatthetimeofinfection.pathways.OnepathwayledfromthenasalmucosaandInlitterswithoutmaternalprotection,morbidityislittertonsilstothetrigeminalganglionandthetrigeminalsen-dependentandmayapproach100%whentheinfectionsorynucleusinthebrainstem.Asecondpathwaywasoccursnearbirth.Morbiditydecreasesmarkedlywithalongthevagalnervesviathevagalsensorygangliontoincreasingageatinfection.Mortalityisvariable,butmaythevagalsensorynucleusinthebrainstem.Athirdpath-be100%inneonatallyinfectedlitters.wayledfromtheintestinalplexusestothespinalcord,IntheArgentinaoutbreak(Quirogaet al.2008),onlyalsoafterreplicationinlocalsensoryganglia.Viremiasucklingpigswereinvolved.Vomitingandwastingwerewasoflittleornoimportanceinthepathogenesisofthethemainsigns,withslightmotordisorders.Diseasedisease(AndriesandPensaert1980b).occurredin27.6%ofpigs<1weekoldanddeclinedtoIntheCNS,theinfectionstartedinwell‐definednuclei1.6%inpigs3weeksofage.InthispHEVoutbreak,anofthemedullaoblongata,butprogressedintotheentireestimated12.6%(3683)ofthesucklingpigsintheaffectedbrainstem,thespinalcord,andsometimesalsothecer-farrowingunitsdiedorwereeuthanized.Afterweaning,ebrumandcerebellum.IFstaininginthebrainwasameanof29%(15–40%)ofthepigscomingfromaffectedalwaysrestrictedtotheperikaryonandprocessesofneu-farrowingunitsshowedwasting.rons.VomitingwasinducedbyviralreplicationintheOutbreaksofthemotorencephalomyelitisdiseaseinvagalsensoryganglion(gangliondistalevagi)orbysucklingpigsmaystartwithsneezing,coughing,andimpulsestothevomitingcenterproducedbyinfectedvomiting4–7daysafterbirth.Vomitingcontinuesinter-neuronsatdifferentsites(Andries1982).Toelucidatemittentlyfor1–2days,butisrarelysevere.Insomeout-thepathogenesisofwasting,Andries(1982)suggestedbreaks,thefirstsignisacutedepressionandhuddling.thatvirus‐inducedlesionsintheintramuralplexusesofAfter1–3days,pigsexhibitvariouscombinationsofthestomachmaycontributetogastricstasisanddelayednervousdisorders.Generalizedmuscletremorsandstomachemptying.hyperesthesiaarecommon.Pigsmayhaveajerkygaitandwalkbackward,endinginadog‐sittingposition.Theybecomeweak,areunabletorise,andpaddletheirClinicalsignslimbs.Blindness,opisthotonus,andnystagmusmayalsoSneezingorcoughingmaybethefirstsignofinfectionoccur.Finally,theanimalsbecomedyspneicandliebecauseofprimarypHEVreplicationintheupperprostrateontheirsides.Inmostcases,comaprecedesrespiratorytract.Bodytemperaturecanbeelevatedatdeath. 31Coronaviruses515Morbidityandmortalityinneonatalpigsisusuallyseraaretakenneartheonsetofclinicalsigns.Pigsmay100%,butolderpigsshowamildtransientillnessindevelopantibodytitersasearlyas6–7DPI,whichoftenwhichposteriorparalysismaybethemostcommonsign.coincideswithearlydisease,makinganinterpretationofOutbreaksdescribedinTaiwan(Changet al.1993)inpairedserologymoredifficult.30‐to50‐day‐oldpigswerecharacterizedbyfever,con-DifferentialdiagnosismustbemadebetweenpHEVstipation,hyperesthesia,musculartremor,progressiveencephalomyelitis,Teschen–Talfandisease,andpseu-anteriorparesis,posteriorparesis,prostration,recum-dorabies(Aujeszky’s)disease.Inthelatterinfections,bency,andpaddlingmovementswithamorbidityof4%clinicalsignsofencephalomyelitis,includingmotorandamortalityapproaching100%.Thepigsdieddisorders,aremoresevereandmayappearinpiglets4–5daysaftertheonsetofclinicalsigns.andolderpigs.Aujeszky’sdiseaseinnon‐vaccinatedanimalsalsoinducesrespiratorysignsinolderpigsandabortionsinsows.AllthesevirusescanbegrowninPKLesionscellsandpigthyroidcells,butthetypeofCPEdiffersTheonlygrosslesionsreportedinpHEVinfectionsareandonlypHEVcauseshemadsorptionandhemaggluti-cachexia,stomachdilatation,anddistensionoftheabdo-nation.Theycanbefurtherdifferentiatedbyvirus‐meninsomechronicallyaffectedpigs(Schlenstedtet al.specifictests.1969).MicroscopiclesionsofepithelialdegenerationandImmunityinflammatorycellinfiltrationarefoundinthetonsilsand respiratorysystemofacutelydiseasedpigs(CutlipandAfterinfection,pigsdevelopdetectableprotectivecircu-Mengeling1972;Naritaet al.1989).Anonsuppurativelatingantibodies(HI,VN)topHEVin7–9days.Theencephalomyelitiswasreportedin70–100%ofpigswithdurationofantibodieshasnotbeendetermined.Thenervoussignsandin20–60%ofpigsshowingVWD.ThedurationofimmunityislessimportantinpHEVbecauselesionsarecharacterizedbyperivascularcuffing,gliosis,oftheresistancetodiseasethatdevelopswithage.andneuronaldegeneration(Alexander1962;Changet al.Neonatalpigsborntoimmunemothersarefullypro-1993;RichardsandSavan1960).Theyaremostpro-tectedbymaternallyderivedantibodiesthatpersistuntilnouncedinthegraymatteroftheponsVarolii,medullatheageof4–18(mean10.5)weeks(PaulandMengelingoblongata,andthedorsalhornsoftheupperspinalcord.1984).MicroscopicchangesinthestomachwallwerefoundonlyinpigsshowingVWD.DegenerationofthegangliaPreventionand controlofthestomachwallandperivascularcuffingwerepre-sentin15–85%ofdiseasedanimals.ThelesionswereOnmostbreedingfarms,pHEVinfectionpersistsmostpronouncedinthepyloricglandarea(Schlenstedtendemicallybypig‐to‐pigtransmissionandthroughsub-et al.1969).clinicalrespiratoryinfections.Giltsusuallycontractthevirusbeforetheirfirstfarrowingandthenprovidepro-tectiontotheiroffspringviacolostralantibodies.WhenDiagnosissowsarenotimmuneatfarrowing,(e.g.innewlypopu-Diagnosiscanbemadebyvirusisolation,IHC,orRT‐latedfarms,well‐isolatedgilts,orsmallfarmsinwhichPCR(Quirogaet al.2008).Tonsils,brainstem,andlungsthevirusisnotmaintained),infectionofpigswithinthedissectedasepticallyfromyoungacutelydiseasedpigletsfirstweeksafterbirthresultsinclinicalsigns.Promotingcanbeusedfortesting.Itisdifficulttoisolatethevirusviruscirculationinthefarmsothatgiltsareimmuneatfrompigsthathavebeensickformorethan2–3days.Forfarrowingpreventsdiseaseinpiglets.virusisolation,suspensionsareinoculatedontoprimaryOnceclinicalsignsareevident,thediseasewillrunitsPKcells,secondarypigthyroidcells,orporcinecelllines.course;spontaneousrecoveriesarerare.LittersbornpHEVisdetectedbythepresenceofsyncytia,byhemad-2–3weeksaftertheonsetofdiseaseareusuallypro-sorption,orbyhemagglutination.Oneormoreblindtectedbecausenonimmunegestatingsowsshouldhavepassagesmaybeneededsincespecimensoftencontainbecomeinfectedandimmunebyfarrowing.Pigletsbornsmallamountsofinfectiousvirus.tononimmunesowsearlyintheoutbreakcanbeAntibodiestopHEVcanbedetectedbyVNorhemag-passivelyprotectedbyparenteralinoculationwithspe-glutinationinhibition(HI)tests.TheHIandVNtestscificimmuneserumshortlyafterbirth.Hyperimmunewerealmostequallydiagnosticinswinesera,butVNisserumisnotcommerciallyavailable,butpooledserummorespecific(Sasakiet al.2003).Antibodytiterresultscollectedfromoldersows(attheslaughterhouse)shouldmustbeevaluatedcarefullybecausesubclinicalinfec-befiltersterilizedandtestedtoconfirmpresenceoftionswithpHEVareverycommon.Moreover,asignifi-pHEVantibodies.NovaccinesagainstpHEVarecantriseinantibodytitercanbedetectedonlyifacutecurrentlyavailable. 516SectionIIIViralDiseasesPorcinetorovirusBecausemostpigsbecomeinfectedwithToVspostweaning,maternalantibodiesapparentlyprovideatRelevanceleastpartialprotection.However,theimmunecorre-latesofprotectiontoporcineToVinfectionarenotTorovirus(ToV)particleswereinitiallydetectedbyEMknown.Inoneoffourfarms,itwaspostulatedthatToVinthefecesofa3‐week‐oldpigletwithdiarrheaininfectionofsucklingpigletsinthepresenceofmater-England.Subsequentstudiesrevealedahighseropreva-nalantibodiesdelayeddevelopmentofactiveimmunelence(81–100%)inadultsoryoungnursingpigletsandresponsessuchthatthesepigs,butnotpigsfromthehighdetectionrates(50–75%)amongsubclinicallyotherfarms,shedthesameToVstrainpre‐andpostinfectedweanedpigs(Kronemanet al.1998;Pignatelliweaning(Pignatelliet al.2010).Geneticallydiverseet al.2010).LatterreportsfromEurope,NorthAmerica,ToVstrainsweredetectedwithinherdsinthelatterandSouthAfricasuggestedthatToVwasendemic.InstudyandinKoreanfarms.TheporcineToVswerecontrast,inKorea,only6.4%(19of295)ofdiarrheicassociatedwithsporadicinfectionsamongdiarrheicfecesfrom3‐to45‐day‐oldpigletswerepositiveforpor-pigsfrom65Koreanfarmssurveyed(6.2%offarmscineToV(Shinet al.2010).Ofthese,about74%alsocon-positive)(Shinet al.2010).Basedonphylogenetictainedotherentericpathogens.Consequently,thelinkanalysisoftheSandNgenes,theKoreanToVstrainsbetweenporcineToVandentericdiseaseisunclear,andformeddistinctbrancheswithclusterscorrespondingtherearenoreportsconfirmingporcineToVpathogenic-tothefarmoforigin.ityorgutlesions.EtiologyDiagnosisPorcineToVrepresentsaspecieswithinthegenusMethodstopropagateporcineToVsincellcultureTorovirusofthesubfamilyTorovirinaeinthefamilyhavenotbeendescribed.Forserologicstudies,acellCoronaviridae.Thegenomicorganization,replicationculture‐adaptedequineToVhasbeenusedtoassessstrategy,andpropertiesresembleothermembersinthecross‐reactiveVNantibodiesinswine(KronemanfamilyCoronaviridae(deGrootet al.2008).Likesomeet al.1998;Pignatelliet al.2010).Recentlyanindirectbetacoronaviruses,porcineToVsalsopossessanHEELISAusingrecombinantpurifiedporcineToVNprotein.NotabledifferencesfromCoVsincludeaproteinasantigenwasdeveloped(Pignatelliet al.smallerNprotein(approximately18.7kD)andatubu-2010).Inmost,butnotallcases,therewasagoodlarnucleocapsid,leadingtodifferencesinToVparticlecorrelationbetweenELISAandVNtests.morphology(spherical,elongated,orkidneyshaped)Discrepanciesobservedcouldreflectuseofheterolo-(Kronemanet al.1998).MultipleclustersofporcinegousequineToVantigeninVN,compromisingdetec-ToVshavebeenidentifiedbasedongenesequenceanal-tionoflowtiterantibodies.ysis(deGrootet al.2008;Pignatelliet al.2010;ShinPorcineToVshavebeendetectedinfecesusinget al.2010).IEMtoidentifyantibody‐aggregatedToVparti-clesanddifferentiatethemfromotherfecalpor-cineCoVs(TGEV,PEDV,andPDCoV)(KronemanEpidemiologyand immunityet al.1998).FordetectionofToV‐specificviralBasedonserologicandsheddingdatafromclinicallyRNA,RT‐PCRandreal‐timeRT‐PCRtargetingnormalpigsorsowsinEuropeanherds,ToVswereconservedregionsoftheporcineToVNgeneorendemicin14farmstested.Highseroprevalenceratesthe3′UTRofthegenomehavebeendescribed(81%)weredetectedinsowson10Dutchfarmsbytest-(Kronemanet al.1998;Pignatelliet al.2010;Shiningforcross‐reactiveVNantibodiestoequineToVet al.2010).(Kronemanet al.1998).Similarly,100%ofsows,nurs-ing,andolderpigsinthreefarmsinSpainweresero-positiveforToVantibodiesusinganELISAbasedonPreventionand controlporcineToVNprotein(Pignatelliet al.2010).Longitudinalstudiesrevealedfecalshedding(80%)(RT‐Basedonthelimiteddataavailable,thestressoftrans-PCRorreal‐timeRT‐PCR)postweaningat4–14daysport,movement,andredistributionofpigs,evenwithinfor1–9days(Kronemanet al.1998)orat4and8weeksmultisitefarms,couldprecipitateporcineToVinfectionpostweaning(50–75%)(Pignatelliet al.2010).Inbothwithsimilarordistinctco‐circulatingstrains(Pignatellistudies,maternalantibodytiterswereinitiallyhighinet al.2010).Thus,managementpracticesapplicabletopiglets,declinedatweaning,andthenincreasedpostcontrolofotherentericCoVinfectionsshouldbeimple-infectionat11or15weeksofage.mentedforcontrolofporcineToVs. 31Coronaviruses517ReferencesAbou‐YoussefMH,RisticM.1972.AmJVetResBohlEH,SaifLJ.1975.InfectImmun11:23–32.33:975–979.BohlEH,GuptaRK,OlquinMV,et al.1972.InfectImmunAkimkinV,BeerM,BlomeS,et al.2016.EmergInfectDis6:289–301.22:1314–1315.BohlEH,KohlerEM,SaifLJ,et al.1978.JAmVetMedAlexanderTJ.1962.AmJVetRes23:756–762.Assoc172:458–463.AlonsoC,GoedeDP,MorrisonRB,et al.2014.VetResBoniottiMB,PapettiA,LavazzaA,et al.2016.EmergInfect45:73.Dis22:83–87.AlsopJE.2006.JSwineHealthProd14:97–100.BrimTA,VanCottJL,LunneyJK,et al.1995.VetImmunolvanReethK,PensaertM.1994.VetRec135:594–597.Immunopathol48:35–54.vanReethK,NauwynckH,PensaertM.1996.VetBrittonP,MawdittKL,PageKW.1991.VirusResMicrobiol48:325–335.21:181–198.AndriesK.1982.PathogeneseenepizoötiologievanBrownI,CartwrightS.1986.VetRec119:282–283.“vomitingandwastingdisease,”eenviraleinfektiebijhetBrownTTJr.1981.AmJVetRes42:1033–1036.varken.PhDdissertation,MedFacDiergeneeskdBrownIH,PatonDJ.1991.VetRec128:500–503.Rijksuniv.Ghent24:164.ButlerDG,GallDG,KellyMH,et al.1974.JClinInvestAndriesK,PensaertMB.1980a.AmJVetRes53:1335–1342.41:1372–1378.CallebautP,DebouckP,PensaertM.1982.VetMicrobiolAndriesK,PensaertMB.1980b.AmJVetRes41:215–218.7:295–306.AnnamalaiT,SaifLJ,LuZ,et al.2015.VetImmunolCallebautP,PensaertMB,HooyberghsJ.1989.VetImmunopathol168:193–202.Microbiol20:9–19.Anon.2014.JAmVetMedAssoc244:1234.CallebautP,EnjuanesL,PensaertM.1996.JGenVirol77AntonIM,SuneC,MeloenRH,et al.1995.Virology(Pt2):309–313.212:746–751.Calzada‐NovaG,SchnitzleinW,HusmannR,et al.2010.AntonIM,GonzalezS,BullidoMJ,et al.1996.VirusResVetImmunolImmunopathol135:20–33.46:111–124.CaoL,GeX,GaoY,et al.2015.JGenVirol96:1757–1767.AppelM,GreigAS,CornerAH1965.ResVetSciCartwrightSF,HarrisHM,BlandfordTB,et al.1965.J6:482–489.CompPathol75:387–396.AtanasovaK,VanGuchtS,BarbéF,et al.2008.LungcellCartwrightSF,LucasM,CavillJP,et al.1969.VetRectropismandinflammatorycytokine‐profileofporcine84:175–176.respiratorycoronavirusinfection.OpenVetSciJCarvajalA,LanzaI,DiegoR,et al.1995.JVetDiagnInvest2:117–126.7:60–64.BallesterosML,SanchezCM,EnjuanesL.1997.VirologyCasanovaL,RutalaWA,WeberDJ,et al.2009.WaterRes227:378–388.43:1893–1898.BarmanN,BarmanB,SarmaK,et al.2003.IndianJAnimCepicaA,DerbyshireJB.1984.CanJCompMedSci73:576–578.48:258–261.BelshamGJ,RasmussenTB,NormannP,et al.2016.ChaeC,KimO,ChoiC,et al.2000.VetRec147:606–608.TransboundEmergDis63:595–601.ChangG,ChangT,LinS,et al.1993.IsolationandBernardS,BottreauE,AynaudJM,et al.1989.VetidentificationofhemagglutinatingencephalomyelitisMicrobiol21:1–8.virusfrompigsinTaiwan.JChinSocVetSciBerthonP,BernardS,SalmonH,et al.1990.JImmunol19:147–158.Methods131:173–182.CharleyB,LaudeH.1988.JVirol62:8–11.BestagnoM,SolaI,DallegnoE,et al.2007.JGenVirolChaseyD,CartwrightSF.1978.ResVetSci25:255–256.88:187–195.ChatthaKS,RothJA,SaifLJ.2015.AnnuRevAnimBiosciBjustrom‐KraftJ,WoodardK,Gimenez‐LirolaL,et al.3:375–395.2016.BMCVetRes12:99.ChenW,YanM,YangL,et al.2005.EmergInfectDisBohlE.1979.Diagnosisofdiarrheainpigsdueto11:446–448.transmissiblegastroenteritisvirusorrotavirus.InChenJ,LiuX,ShiD,et al.2013.Viruses5:2601–2613.BricoutF,ScherrerR,eds.ViralEnteritisinHumansandChenQ,LiG,StaskoJ,et al.2014.JClinMicrobiolAnimals.Paris,France:INSERM,pp.341–343.52:234–243.BohlEH,KumagaiT.1965.TheuseofcellculturesfortheChenQ,GaugerP,StafneM,et al.2015.Virologystudyofswinetransmissiblegastroenteritisvirus.In482:51–59.UnitedStatesLivestockSanitaryAssociationMeeting,ChenQ,GaugerPC,StafneMR,et al.2016a.JGenVirolpp.343–350.97:1107–1121. 518SectionIIIViralDiseasesChenQ,ThomasJT,Gimenez‐LirolaLG,et al.2016b.DongN,FangL,YangH,et al.2016.VetMicrobiolBMCVetRes12:70.196:98–106.Cheun‐AromT,TemeeyasenG,SrijangwadA,et al.2015.DoyleLP,HutchingsLM.1946.JAmVetMedAssocGenomeAnnounc3:e00634‐15.108:257–259.ChoudhuryB,DastjerdiA,DoyleN,et al.2016.VirusResDucatelleR,CoussementW,DebouckP,et al.1982.Vet226:40–49.Pathol19:57–66.ChuRM,GlockRD,RossRF.1982.AmJVetRes43:67–76.EliaG,DecaroN,MartellaV,et al.2010.JVirolMethodsCongY,LiX,BaiY,et al.2015.Virology478:1–8.163:309–312.CorreaI,GebauerF,BullidoMJ,et al.1990.JGenVirol71EnjuanesL,VanderZeijstB.1995.Molecularbasisof(Pt2):271–279.transmissiblegastroenteritisvirusepidemiology.InCostantiniV,LewisP,AlsopJ,et al.2004.ArchVirolSiddellSG,ed.TheCoronavidae.NewYork,NY:Plenum149:957–974.Press,pp.337–376.CoussementW,DucatelleR,DebouckP,et al.1982.VetEnjuanesL,SuneC,GebauerF,et al.1992.VetMicrobiolPathol19:46–56.33:249–262.CoxE,HooyberghsJ,PensaertMB.1990a.ResVetSciEnjuanesL,SolaI,AlonsoS,et al.2005.CurrTop48:165–169.MicrobiolImmunol287:161–197.CoxE,PensaertMB,CallebautP,et al.1990b.VetErlesK,BrownlieJ.2009.VirusRes141:21–25.Microbiol23:237–243.FrederickGT,BohlEH,CrossRF.1976.AmJVetResCoxE,PensaertMB,CallebautP.1993.Vaccine37:165–169.11:267–272.FuruuchiS,ShimizuM,ShimizuY.1978.FieldtrialsCrawfordK,LagerK,MillerL,et al.2015.VetRes46:49.on transmissiblegastroenteritislivevirusvaccineCrawfordK,LagerKM,KulshreshthaV,et al.2016.Virusin newbornpiglets.NatlInstAnimHealthQRes226:108–116.18:135–142.CumminsJM,MockRE,ShiveBW,et al.1995.VetGarwesDJ,StewartF,CartwrightSF,et al.1988.VetRecImmunolImmunopathol45:355–360.122:86–87.CutlipRC,MengelingWL.1972.AmJVetResGerberPF,OpriessnigT.2015.MethodsX2:368–373.33:2003–2009.GerberPF,GongQ,HuangYW,et al.2014.VetJDeDiegoM,RodriguezF,AlcarazC,et al.1994.JGen202:33–36.Virol75(Pt10):2585–2593.Gimenez‐LirolaLG,ZhangJ,Carrillo‐AvilaJA,et al.2017.DebouckP,PensaertM.1980.AmJVetRes41:219–223.JClinMicrobiol55:1426–1436.DebouckP,PensaertM,CoussementW.1981.VetGodetM,RasschaertD,LaudeH.1991.VirologyMicrobiol6:157–165.185:732–740.DebouckP,CallebautP,PensaertM.1982.PrevalenceofGodetM,GrosclaudeJ,DelmasB,et al.1994.JVirolporcineepidemicdiarrhea(PED)virusinthepig68:8008–8016.populationofdifferentcountries.InProceedingsoftheGomezN,WigdorovitzA,CastanonS,et al.2000.Arch7thInternationalPigVeterinaryCongress,p.53.Virol145:1725–1732.DecaroN,MariV,CampoloM,et al.2009.JVirolGongL,LiJ,ZhouQ,et al.2017.EmergInfectDis83:1532–1537.23:1607–1609.DecaroN,MariV,EliaG,et al.2010.EmergInfectDisGonzalezJM,Gomez‐PuertasP,CavanaghD,et al.2003.16:41–47.ArchVirol148:2207–2235.DeeS,ClementT,SchelkopfA,et al.2014.BMCVetResGoughPM,JorgensonRD.1983.AmJVetRes10:176.44:2078–2082.DeeS,NeillC,SingreyA,et al.2016.BMCVetRes12:51.GreigAS,MitchellD,CornerAH,et al.1962.CanJCompDelmasB,LaudeH.1990.JVirol64:5367–5375.MedVetSci26:49–56.DelmasB,GelfiJ,L’HaridonR,et al.1992.NatureGreigAS,JohnsonCM,BouillantAM.1971.ResVetSci357:417–420.12:305–307.DerbyshireJB,JessettDM,NewmanG.1969.JCompdeGrootR,ZiebuhrJ,PoonL,et al.2008.RevisionofthePathol79:445–452.familyCoronaviridae.TaxonomicproposaloftheDeDiegoM,LaviadaMD,EnjuanesL,et al.1992.JVirolCoronavirusStudyGrouptotheICTVExecutive66:6502–6508.Committee.http://talk.ictvonline.org/media/p/1230.DingZ,FangL,JingH,et al.2014.JVirol88:8936–8945.aspx.AccessedJanuary27,2017.DongBQ,LiuW,FanXH,et al.2007.JVirolGuscettiF,BernasconiC,ToblerK,et al.1998.ClinDiagn81:6920–6926.LabImmunol5:412–414.DongN,FangL,ZengS,et al.2015.EmergInfectDisHaasB,AhlR,BohmR,et al.1995.RevSciTech21:2254–2255.14:435–445. 31Coronaviruses519HaeltermanEO.1962.EpidemiologicalstudiesofJiangX,HouX,TangL,et al.2016.ApplMicrobioltransmissiblegastroenteritisofswine.InUnitedStatesBiotechnol100:7457–7469.LivestockSanitaryAssociationMeeting,pp.305–315.JungK,AhnK,ChaeC.2006.ResVetSci81:310–315.HalburPG,PaulPS,VaughnEM,et al.1993.JVetDiagnJungK,AlekseevKP,ZhangX,et al.2007.JVirolInvest5:184–188.81:13681–13693.HarrisD,BevierG,WisemanB.1987.EradicationofJungK,RenukaradhyaGJ,AlekseevKP,et al.2009.JGentransmissiblegastroenteritisviruswithoutdepopulation.Virol90:2713–2723.InAmericanAssociationofSwinePractitionersJungK,GurnaniA,RenukaradhyaGJ,et al.2010.VetMeeting,p.555.ImmunolImmunopathol136:335–339.HaveP.1990.AdvExpMedBiol276:435–439.JungK,WangQ,ScheuerKA,et al.2014.EmergInfectDisHaveP,MovingV,SvanssonV,et al.1992.VetMicrobiol20:662–665.31:1–10.JungK,AnnamalaiT,LuZ,et al.2015a.VetMicrobiolHessR,ChenY,BachmannPA.1982.Activeimmunization178:31–40.offeederpigsagainsttransmissiblegastroenteritisJungK,HuH,EyerlyB,et al.2015b.EmergInfectDis(TGE):Influenceofmaternalantibodies.InInternational21:650–654.PigVeterinaryCongress,p.1.JungK,HuH,SaifLJ.2016a.VetMicrobiol182:57–63.HillH,BiwerJ,WoodsR,et al.1990.PorcinerespiratoryJungK,HuH,SaifLJ.2016b.VirusRes226:50–59.coronavirusisolatedfromtwoU.S.swineherds.InJungK,HuH,SaifLJ.2017.ArchVirol162:2357–2362.AmericanAssociationofSwinePractitionersMeeting,KemenyLJ,WoodsRD.1977.AmJVetRes38:307–310.p.333.KemenyLJ,WiltseyVL,RileyJL.1975.CornellVet65:352–362.HiraharaT,YasuharaH,KodamaK,et al.1987.IsolationofKhatriM.2015.EmergInfectDis21:549–550.hemagglutinatingencephalomyelitisvirusfromKimO,ChaeC.2000.VetPathol37:62–67.respiratorytractofpigsinJapan.NihonJuiqakuZasshiKimO,ChaeC.2003.JCompPathol129:55–60.49:85–93.KimL,ChangKO,SestakK,et al.2000a.JVetDiagnInvestHiraharaT,YamanakaM,YasuharaH,et al.1989.12:385–388.ExperimentalinfectionofpigswithporcineKimL,HayesJ,LewisP,et al.2000b.ArchVirolhemagglutinatingencephalomyelitisvirus.Nihon145:1133–1147.JuiqakuZasshi51:827–830.KimSY,SongDS,ParkBK.2001.JVetDiagnInvestHiranoN,NomuraR,TawaraT,et al.2004.JCompPathol13:516–520.130:58–65.KimSH,KimIJ,PyoHM,et al.2007.JVirolMethodsHofmannM,WylerR.1988.JClinMicrobiol26:2235–2239.146:172–177.HofmannM,WylerR.1990.VetMicrobiol21:263–273.KimSH,LeeJM,JungJ,et al.2015.ArchVirolHooperBE,HaeltermanEO.1966a.JAmVetMedAssoc160:1055–1064.149:1580–1586.KimYK,ChoYY,AnBH,et al.2016.ArchVirolHooperBE,HaeltermanEO.1966b.AmJVetRes161:1323–1328.27:286–291.KnuchelM,AckermannM,MullerHK,et al.1992.VetHornichM,SalajkaE,StepanekJ.1977.ZentralblMicrobiol32:117–134.VeterinarmedB24:75–86.KodamaY,OgataM,SimizuY.1980.AmJVetResHouXL,YuLY,LiuJ.2007.VetMicrobiol123:86–92.41:740–745.HuS,BruszewskiJ,SmallingR,et al.1985.AdvExpMedKronemanA,CornelissenLA,HorzinekMC,et al.1998.JBiol185:63–82.Virol72:3507–3511.HuH,JungK,VlasovaAN,et al.2015.JClinMicrobiolKsiazekTG,ErdmanD,GoldsmithCS,et al.2003.NEnglJ53:1537–1548.Med348:1953–1966.HuH,JungK,VlasovaAN,et al.2016.ArchVirolKubotaS,SasakiO,AmimotoK,et al.1999.JVetMedSci161:3421–3434.61:827–830.HwangEK,KimJH,JeanYH,et al.1994.CurrentKuwaharaH,NunoyaT,SamejimaT,et al.1988.JJpnVetoccurrenceofporcineepidemicdiarrheainKorea.RDAMedAssoc41:169–173.JAgricSci36:587–596.KweonC,KwonBJ,JungTS,et al.1993.KoreanJVetResIshikawaK,SekiguchiH,OginoT,et al.1997.JVirol33:249–254.Methods69:191–195.KweonCH,KwonBJ,KangYB,et al.1994.KoreanJVetResJabraneA,GirardC,ElazharyY.1994.CanVetJ35:86–92.34:321–326.JanetanakitT,LumyaiM,BunpapongN,et al.2016.EmergKweonCH,KwonBJ,LeeJG,et al.1999.VaccineInfectDis22:757–759.17:2546–2553.JiangX,YuM,QiaoX,et al.2014.ApplMicrobiolLangelSN,PaimFC,LagerKM,et al.2016.VirusResBiotechnol98:8301–8312.226:93–107. 520SectionIIIViralDiseasesLanzaI,BrownIH,PatonDJ.1992.ResVetSciMadsonDM,ArrudaPH,MagstadtDR,et al.2015.Vet53:309–314.Pathol53:44–52.LanzaI,ShoupDI,SaifLJ.1995.AmJVetRes56:739–748.MartelliP,LavazzaA,NigrelliAD,et al.2008.VetRecLaudeH,GelfiJ,AynaudJM.1981.AmJVetRes162:307–310.42:447–449.MarthalerD,JiangY,OttersonT,et al.2013.GenomeLaudeH,CharleyB,GelfiJ.1984.JGenVirol65(PtAnnounc1:e00555–13.2):327–332.MarthalerD,JiangY,CollinsJ,et al.2014a.GenomeLaudeH,GelfiJ,LavenantL,et al.1992.JVirolAnnounc2:e00218–00214.66:743–749.MarthalerD,RaymondL,JiangY,et al.2014b.EmergInfectLaudeH,vanReethK,PensaertM.1993.VetResDis20:1347–1350.24:125–150.MasudaT,MurakamiS,TakahashiO,et al.2015.ArchLaviadaMD,VidegainSP,MorenoL,et al.1990.VirusResVirol160:2565–2568.16:247–254.MasudaT,TsuchiakaS,AshibaT,et al.2016.JpnJVetResLeeS,ParkGS,ShinJH,et al.2014.GenomeAnnounc64:5–14.2:e01116‐14.McClurkinAW,NormanJO.1966.CanJCompMedVetLeeDU,KwonT,JeSH,et al.2016a.VetMicrobiolSci30:190–198.192:90–94.McClurkinAW,StarkSL,NormanJO.1970.CanJCompLeeJH,ChungHC,NguyenVG,et al.2016b.TransboundMed34:347–349.EmergDis63:248–252.MengF,RenY,SuoS,et al.2013.PLoSOne8:e57468.LesnickCE,DerbyshireJB.1988.VetImmunolMengelingWL,CutlipRC.1976.JAmVetMedAssocImmunopathol18:109–117.168:236–239.LiBX,GeJW,LiYJ.2007.Virology365:166–172.MengelingWL,BootheAD,RitchieAE.1972.AmJVetResLiW,LiH,LiuY,et al.2012.EmergInfectDis33:297–308.18:1350–1353.MongerW,AlamilloJM,SolaI,et al.2006.PlantLiG,ChenQ,HarmonKM,et al.2014.GenomeAnnouncBiotechnolJ4:623–631.2:e00278–e00214.MoonHW.1978.JAmVetMedAssoc172:443–448.LiW,LuoR,HeQ,et al.2017.VirusRes235:6–13.MoonHW,KemenyLJ,LambertG,et al.1975.VetPatholLiW,HulswitRJG,KenneySP,et al.2018.ProcNatlAcad12:434–445.SciUSA115:E5135–E5143.MouC,ZhuL,XingX,et al.2016.AntiviralResLinCN,ChungWB,ChangSW,et al.2014.JVetMedSci131:74–84.76:1297–1299.MoxleyRA,OlsonLD.1989.AmJVetRes50:111–118.LinCM,AnnamalaiT,LiuX,et al.2015a.VetRes46:134.NamE,LeeC.2010.VetMicrobiol144:41–50.LinCM,GaoX,OkaT,et al.2015b.JVirol89:3332–3342.NaritaM,KawamuraH,TsuboiT,et al.1989.JCompLinCM,SaifLJ,MarthalerD,et al.2016.VirusResPathol100:305–312.226:20–39.NiederwerderMC,NietfeldJC,BaiJ,et al.2016.JVetLiuX,WangQ.2016.JVirolMethods234:137–141.DiagnInvest28:671–678.LiuC,TangJ,MaY,et al.2015a.JVirol89:6121–6125.vanNieuwstadtAP,ZetstraT.1991.AmJVetResLiuX,LinCM,AnnamalaiT,et al.2015b.VetRes46:109.52:1044–1050.LoewenKG,DerbyshireJB.1988.CanJVetResvanNieuwstadtAP,CornelissenJB,ZetstraT.1988.AmJ52:149–153.VetRes49:1836–1843.LohseL,KrogJS,StrandbygaardB,et al.2016.TransboundvanNieuwstadtAP,ZetstraT,BoonstraJ.1989.VetRecEmergDis64:1380–1386.125:58–60.LopezL,VenteoA,GarciaM,et al.2009.JVetDiagnInvestNodaM,YamashitaH,KoideF,et al.1987.ArchVirol21:598–608.96:109–115.LorsirigoolA,Saeng‐ChutoK,TemeeyasenG,et al.2016.O’TooleD,BrownI,BridgesA,et al.1989.ResVetSciArchVirol161:2909–2911.47:23–29.MaSQ,WangM,FengL,et al.1995.ChinAnimInfectDisOgawaH,TairaO,HiraiT,et al.2009.JVirolMethods6:23–27.160:210–214.MaG,FengY,GaoF,et al.2005.BiochemBiophysResOhJS,SongDS,YangJS,et al.2005.JVetSci6:349–352.Commun337:1301–1307.OkaT,SaifLJ,MarthalerD,et al.2014.VetMicrobiolMaY,ZhangY,LiangX,et al.2015.MBio6:e00064.173:258–269.MaY,ZhangY,LiangX,et al.2016.VetMicrobiolOkdaF,LiuX,SingreyA,et al.2015.BMCVetRes11:180.186:90–96.OkdaF,LawsonS,LiuX,et al.2016.BMCVetRes12:95.MadsonDM,MagstadtDR,ArrudaPH,et al.2014.VetOldhamJ.1972.Lettertotheeditor.PigFarming(SupplMicrobiol174:60–68.Oct):72–73. 31Coronaviruses521OnnoM,JestinA,CarioletR,et al.1989.ZentralblSaifLJ1989.ComparativeaspectsofentericviralVeterinarmedB36:629–634.infections.InSaifLJ,TheilKW,eds.ViralDiarrheaofOrtegoJ,CerianiJE,PatinoC,et al.2007.VirologyManandAnimals.BocaRaton,FL:CRC,pp.9–34.368:296–308.SaifLJ,BohlEH.1979.RoleofSIgAinpassiveimmunityofPanY,TianX,QinP,et al.2017.VetMicrobiol211:15–21.swinetoentericviralinfections.InOgraP,DaytonD,ParkJE,ShinHJ.2014.VirusRes191:143–152.eds.ImmunologyofBreastMilk.NewYork,NY:RavenParkS,SestakK,HodginsDC,et al.1998.AmJVetResPress,pp.237–248.59:1002–1008.SaifLJ,BohlEH.1983.AnnNYAcadSci409:708–723.PatonDJ,BrownIH.1990.VetResCommun14:329–337.SaifL,JackwoodDJ.1990.Entericvirusvaccines:PaudelS,ParkJE,JangH,et al.2014.VetQ34:218–223.Theoreticalconsiderations,currentstatus,andfuturePaulPS,MengelingWL.1984.AmJVetRes45:932–934.approaches.InSaifL,TheilKW,eds.ViralDiarrheasofPensaertM.1989.TransmissiblegastroenteritisvirusManandAnimals.BocaRaton,FL:CRCPress,Inc.,pp.(respiratoryvariant).InPensaertM,ed.VirusInfections313–329.ofPorcines.Amsterdam:ElsevierSciencePublishers,pp.SaifLJ,SestakK.2006.Transmissiblegastroenteritisvirus154–165.andporcinerespiratorycoronavirus.InStrawBE,PensaertMB.2006.HemagglutinatingencephalomyelitisZimmermanJJ,D’AllaireD,et al.,eds.Diseasesofvirus.InStrawBL,ZimmermanJJ,D’AllaireS,et al.,eds.Swine.Ames,IA:BlackwellPublishingCompany,DiseasesofSwine.Ames,IA:BlackwellPublishing,pp.pp. 489–516.353–358.SaifLJ,BohlEH,GuptaRK.1972.InfectImmun6:600–609.PensaertMB,CallebautPE.1974.CharacteristicsofaSaifLJ,BohlEH,KohlerEM,et al.1977.AmJVetRescoronaviruscausingvomitionandwastinginpigs.Arch38:13–20.GesamteVirusforsch44:35–50.SaifLJ,vanCottJL,BrimTA.1994.VetImmunolPensaertMB,deBouckP.1978.ArchVirol58:243–247.Immunopathol43:89–97.PensaertMB,MartelliP.2016.VirusRes226:1–6.SanchezCM,JimenezG,LaviadaMD,et al.1990.VirologyPensaertM,HaeltermanEO,BurnsteinT.1970.Arch174:410–417.GesamteVirusforsch31:321–334.SanchezCM,IzetaA,Sanchez‐MorgadoJM,et al.1999.JPensaertM,CallebautP,VergoteJ.1986.VetQ8:257–261.Virol73:7607–7618.PensaertM,CoxE,vanDeunK,et al.1993.VetQSasakiI,KazusaY,ShiraiJ,et al.2003.JVetMedSci15:16–20.65:381–383.PenzesZ,GonzalezJM,CalvoE,et al.2001.VirusGenesSassevilleAM,GelinasAM,SawyerN,et al.2001.AdvExp23:105–118.MedBiol494:57–62.PignatelliJ,Grau‐RomaL,JimenezM,et al.2010.VetSatoT,TakeyamaN,KatsumataA,et al.2011.VirusGenesMicrobiol146:260–268.43:72–78.PilchardEI.1965.AmJVetRes26:1177–1179.SchlenstedtD,BarnikolH,PlonaitH.1969.VomitingandPospischilA,HessRG,BachmannPA.1981.Zentralbldistressinsucklingpigs(shortclinicalreport).DtschVeterinarmedB28:564–577.TierarztlWochenschr76:694–695.PosthumusWP,LenstraJA,vanNieuwstadtAP,et al.1991.SchultzeB,KremplC,BallesterosML,et al.1996.JVirolVirology182:371–375.70:5634–5637.PritchardGC.1987.VetRec120:226–230.SchumacherLL,WoodworthJC,JonesCK,et al.2016.AmPuranavejaS,PoolpermP,LertwatcharasarakulP,et al.JVetRes77:1108–1113.2009.EmergInfectDis15:1112–1115.Schwegmann‐WesselsC,HerrlerG.2006.TransmissibleQingY,LiuJ,HuangX,et al.2016.VirusGenesgastroenteritisvirusinfection:Avanishingspecter.52:218–227.DtschTierarztlWochenschr113:157–159.QuirogaMA,CappuccioJ,PineyroP,et al.2008.EmergSchwegmann‐WesselsC,ZimmerG,LaudeH,et al.2002.JInfectDis14:484–486.Virol76:6037–6043.RasschaertD,DuarteM,LaudeH.1990.JGenVirol71(PtSedlakK,BartovaE,MachovaJ.2008.JWildlDis11):2599–2607.44:777–780.RenX,LiP.2011.VirusGenes42:229–235.SestakK,LanzaI,ParkSK,et al.1996.AmJVetResRenX,GlendeJ,YinJ,et al.2008.VirusRes137:220–224.57:664–671.ReynoldsDJ,GarwesDJ.1979.ArchVirol60:161–166.SestakK,MeisterRK,HayesJR,et al.1999a.VetImmunolReynoldsDJ,GarwesDJ,LuceyS.1980.VetMicrobiolImmunopathol70:203–221.5:283–290.SestakK,ZhouZ,ShoupDI,et al.1999b.JVetDiagnRichardsW,SavanM.1960.CornellVet50:132–155.Invest11:205–214.Saeng‐ChutoK,LorsirigoolA,TemeeyasenG,et al.2017.ShibataI,TsudaT,MoriM,et al.2000.VetMicrobiolTransboundEmergDis64:3–10.72:173–182. 522SectionIIIViralDiseasesShimizuM,ShimizuY.1979.InfectImmun23:239–243.ThomasJT,ChenQ,GaugerPC,et al.2015.PLoSOneShinDJ,ParkSI,JeongYJ,et al.2010.ArchVirol10:e0139266.155:417–422.TorresJM,AlonsoC,OrtegaA,et al.1996.JVirolShiratoK,MaejimaM,IslamMT,et al.2016.JGenVirol70:3770–3780.97:2528–2539.TubolyT,NagyE.2001.JGenVirol82:183–190.ShoupDI,SwayneDE,JackwoodDJ,et al.1996.JVetTubolyT,NagyE,DerbyshireJB.1995.CanJVetResDiagnInvest8:161–167.59:70–72.ShoupDI,JackwoodDJ,SaifLJ.1997.AmJVetResTubolyT,YuW,BaileyA,et al.2000.Vaccine58:242–250.18:2023–2028.SimkinsRA,WeilnauPA,BiasJ,et al.1992.AmJVetResUnderdahlNR,MebusCA,StairEL,et al.1972.CanVetJ53:1253–1258.13:9–16.SimkinsRA,WeilnauPA,VanCottJ,et al.1993.AmJVetUnderdahlNR,MebusCA,Torres‐MedinaA.1975.AmJRes54:254–259.VetRes36:1473–1476.SinhaA,GaugerP,ZhangJ,et al.2015.VetMicrobiolVanCottJL,BrimTA,SimkinsRA,et al.1993.JImmunol179:296–298.150:3990–4000.SmerdouC,UrnizaA,CurtisR3rd,et al.1996.VetVanCottJL,BrimTA,LunneyJK,et al.1994.JImmunolMicrobiol48:87–100.152:3980–3990.SongDS,OhJS,KangBK,et al.2007.ResVetSciVaughnEM,HalburPG,PaulPS.1995.JVirol82:134–140.69:3176–3184.SongD,MoonH,KangB.2015a.ClinExpVaccineResVlasovaAN,ZhangX,HasoksuzM,et al.2007.JVirol4:166–176.81:13365–13377.SongD,ZhouX,PengQ,et al.2015b.TransboundEmergVlasovaAN,MarthalerD,WangQ,et al.2014.EmergDis62:575–580.InfectDis20:1620–1628.SongQ,StoneS,DrebesD,et al.2016.VirusResVuiDT,TungN,InuiK,et al.2014.GenomeAnnounc226:85–92.2:e00753–14.StadlerJ,ZoelsS,FuxR,et al.2015.BMCVetRes11:142.WangXM,NiuBB,YanH,et al.2013.ArchVirolStepanekJ,MensikJ,FranzJ,et al.1979.Epizootiology,158:2487–2494.diagnosisandpreventionofviraldiarrheainpigletsWangL,ByrumB,ZhangY.2014a.EmergInfectDisunderintensivehusbandryconditions.In21stWorld20:1227–1230.VeterinaryCongress,Moscow,p.43.WangL,ByrumB,ZhangY.2014b.EmergInfectDisStevensonGW,HoangH,SchwartzKJ,et al.2013.JVet20:917–919.DiagnInvest25:649–654.WangL,ByrumB,ZhangY.2014c.EmergInfectDisStoneSS,KemenyLJ,WoodsRD,et al.1977.AmJVetRes20:1594–1595.38:1285–1288.WangL,ZhangY,ByrumB.2014d.JVirolMethodsSuM,LiC,GuoD,et al.2016.JVetMedSci78:601–606.207:154–157.SueyoshiM,TsudaT,YamazakiK,et al.1995.JCompWangD,FangL,ShiY,et al.2015.JVirol90:2090–2101.Pathol113:59–67.WangD,FangL,XiaoS.2016a.VirusRes226:7–13.SunZF,MengXJ.2004.JClinMicrobiol42:2351–2352.WangJ,DengF,YeG,et al.2016b.VirolSin31:49–56.SunRQ,CaiRJ,ChenYQ,et al.2012.EmergInfectDisWangL,HayesJ,SarverC,et al.2016c.ArchVirol18:161–163.161:171–175.SunD,WangX,WeiS,et al.2016.JVetMedSci78:355–363.WangB,LiuY,JiCM,et al.2018.JVirol92:e00318‐18.SuzukiT,MurakamiS,TakahashiO,et al.2015.InfectWesleyRD,WoodsRD.1993.VetMicrobiol38:31–40.GenetEvol36:363–368.WesleyRD,WoodsRD.1996.AmJVetRes57:157–162.SuzukiT,ShibaharaT,YamaguchiR,et al.2016.JGenWesleyRD,WoodsRD,HillHT,et al.1990.JVetDiagnVirol97:1823–1828.Invest2:312–317.TakahashiK,OkadaK,OhshimaK.1983.AnoutbreakofWesleyRD,WoodsRD,McKeanJD,et al.1997.CanJVetswinediarrheaofanew‐typeassociatedwithRes61:305–308.coronavirus‐likeparticlesinJapan.NihonJuigakuZasshiWesselingJG,VennemaH,GodekeGJ,et al.1994.JGen45:829–832.Virol75(Pt7):1789–1794.TeeravechyanS,FrantzPN,WongthidaP,et al.2016.VirusWitteKH.1971.ZentralblVeterinarmedB18:770–778.Res226:152–171.WitteKH,WaltherC.1976.Age‐dependentsusceptibilityThachilA,GerberPF,XiaoCT,et al.2015.PLoSOneofpigstoinfectionswiththevirusoftransmissible10:e0124363.gastroenteritis.InInternationalPigVeterinarySocietyThakeDC.1968.AmJPathol53:149–168.Congress,Ames,IA,K3. 31Coronaviruses523WooPC,LauSK,LamCS,et al.2012.JVirolZhangJ.2016.VirusRes226:71–84.86:3995–4008.ZhangX,HasoksuzM,SpiroD,et al.2007.VirologyWoodEN.1977.VetRec100:243–244.358:424–435.WoodsRD,WesleyRD.1992.CanJVetRes56:78–80.ZhangX,AlekseevK,JungK,et al.2008.JVirolWoodsRD,WesleyRD.1998.AdvExpMedBiol82:4420–4428.440:641–647.ZhangD,HuangX,ZhangX,et al.2016a.JVirolMethodsWoodsRD,WesleyRD,KapkePA.1988.AmJVetRes227:6–13.49:300–304.ZhangJ,TsaiYL,LeePY,et al.2016b.JVirolMethodsXuX,ZhangH,ZhangQ,et al.2013a.VirolJ10:26.234:34–42.XuX,ZhangH,ZhangQ,et al.2013b.VetMicrobiolZhangQ,ShiK,YooD.2016c.Virology489:252–268.164:212–221.ZhangJ,Yim‐ImW,ChenQ,et al.2018.VirusGenesXuanH,XingD,WangD,et al.1984.ChinaJVetSci54:323–327.4:202–208.ZhaoS,GaoQ,QinT,et al.2014.VetMicrobiol171:74–86.YaegerM,FunkN,HoffmanL.2002.JVetDiagnInvestZhouJF,HuaXG,CuiL,et al.2007.AntiviralRes14:281–287.74:36–42.YagamiK,IzumiY,KajiwaraN,et al.1993.JCompPatholZhouJ,HuangF,HuaX,et al.2010.VirusRes149:51–55.109:21–27.ZhouP,FanH,LanT,et al.2018.Nature556:255–258.YuX,ShiL,LvX,et al.2015.VirolJ12:76.ZhuX,LiuS,WangX,et al.2018.EmergMicrobesInfectYuanX,LinH,FanH.2015.Vaccine33:3900–3906.7:65.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭