线性规划问题的教学设计

(22页)

'线性规划问题的教学设计'
线性规划问题的教学设计  简单的  一、教材分析:  本节是新教材必修5:简单的线性规划问题的内容:在学习了利用不等关系描述客观世界、二元一次不等式与平面区域的对应关系两节内容后,又补充了直线的斜率和倾斜角的基础上来学习本节的线性规划问题。经过前两节的铺垫,本节课学生将学习以下几点:  正确构造线性约束条件、线性目标函数; 明确线性目标函数的几何意义; 利用图解法求线性目标函数的最值问题。  二、学情分析:  本节课之前学生通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。从数学知识上看,本节线性规划求最优问题涉及多个已知数据,多个字母变量、多个不等关系,如果不在前面打好基础,就会增加本节课学习的难度。学生没有学习直线方程的斜截式,如果本节涉及截距的话,怕学生理解不到位,所以,我选择避开截距,而继续用初中学生比较熟悉的与y轴交点的纵坐标来说明。从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还不熟练,这成了学生学习的困难。  三、教学目标:  知识和技能:  了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念; 了解线性规划的图解法,体会数形结合的思想,转化和化归的思想的运用,并会用图解法  求线性目标函数的最大值;  能将实际问题转化为数学问题,从实际情景中抽象解决一些简单线性规划应用问题的基本  思路和方法。  过程与方法:  (1) 在学生独立探究和师生互动的活动中完成简单的线性规划的数学理论的建构 (2) 在实践中掌握求解简单的线性规划的方法——的图解法 情感态度与价值观:  通过实例,继续感受在现实世界和日常生活中存在着大量的不等关系,体验数学和日常生  活的联系,感受数学的应用价值,增强应用意识,提高实践能力  让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神; 设计不同层次的练习,让不同层次的学生在练习中体验成功的喜悦,得到应有的发展,为   1    数学的高效课堂提供保证  四、教学重点、教学难点  教学重点:利用图解法求线性目标函数的最值问题 教学难点:目标函数几何意义的理解  (2) 对用图解法求线性规划问题的最优解这一方法的理解和应用  五、突破重难点的方法:  1、以已有的知识、能力为基础,引导联想、类比,用逐层递进的问题探究调动思维,激发学习  热情;  2、适当运用多媒体,调动学生通过数形结合的手段帮助理解、分析;  六、教学方法:引导,探究,讲授,实践,归纳 七、教学过程:  【一】复习回顾:  上节课学习了什么知识:  二元一次不等式与平面区域。  下面我们对学习过的内容进行回顾: 【二】创设情境,引入新课: 请作出不等式组对应的平面区域:  0x40y3 x2y8【设计意图】对所学的知识进行回顾,展示学生的作图结果,引导学生指出需要注意的问题。  【处理手段】请学生利用实物投影演示作图结果,教师予以相应评价  0x4已知(x,y)满足不等式组0y3,求z2xy的最大值。  x2y8我们怎么解析决这个新问题呢?,这就是今天所要讲的知识。 【设计意图】旧知复习过渡到新知讲授,通过问题解决,体现本节课的主要内容 【处理手段】教师设置问题情境,鼓励学生积极思考,教师适时加以引导 【三】引导探究,获取新知  探究:  探究1、要想求z2xy的范围,是否可以通过x和y的范围来求解?  探究结果:(x,y)必须是区域内的点,看来将x,y分开考虑是行不通的,x,y是相互制约的  【设计意图】引发学生思考,体会不等式组所表示的平面区域涵义,并通过讨论解决。  【师】:我们需要在不等式组表示的平面区域内找一点,把它的坐标代入式子z2x3y时,使该  式取最大值。可是我们不可能逐点代入,太费时了,我们就想是否有什么办法,使得我们通过图,就能观察出过哪点时,Z取得最大值呢?  探究2、不等式组在直角坐标系中有对应的几何图形,z2xy在直角坐标系中的几何图形是什么?能否联想到学过的函数?  得出结论:在直角坐标系中。  y2xz表示的是  y2xz中的z表示的是    【师】: 不等式组在直角坐标系中有对应的几何图形,z2xy在直角坐标系中的几何图形是什么?能否联想到学过的函数? 从方程的角度来理解这个等式z2xy,它是关于(x,y)的二元一次方程2xyz0对应的图像是一条直线,在初中,我们习惯把直线化作什么形式呢?对,斜截式。即y2xz,这条直线大家都会画吗?为什么?因为是不知道的。通常在一个问题不好解决时,我们通常先想特殊情况,取什么值是你会画?研究  的取不同值对直线有什么影响?令  Z0,1,1,2,2,观察发现,  【生】:y2xz表示的是倾斜程度一样的平行直线。  【师】:我们将特殊的一条l0:y2x在直角坐标系中画出。将其平移即可得到y2xz。  但什么时候Z值最大呢?研究Z与直线的什么有关呢?所以,要想Z最大,只需直线与y轴交点的  纵坐标最大就行了。是不是越往上还是往下平移呢?往上Z越大,那是不是Z的最值是无穷大呀?  对,点(x,y)必须是区域内的点,所以,要求直线必须与区域相交。最后过的是哪点呢?  【设计意图】例题学习的重点是引导学生分析解题思路和方法,要让学生参与到其中,要引导学生  经历、体验新知的发现、生成、应用的过程,体验数形结合和转化的思想方法,从而   3    使学生更好地理解求最优解问题。对于需要学生完成的操作、尝试、猜想等探究活动教师要放手让学生去做。  【处理手段】设置几个逐层递进的问题,引导学生发现规律,体会平移的本质,找到解决问题的途  径。教师示范标准的解题过程。  下面我们一起写出本题的详细解答过程。  解:先做出区域:z2xyy2xz  令z0,作直线l0:y2x,并平移l0。  当直线过点M时,直线与y轴交点的纵坐标最大  x4M(4,2) x2y8Zmax24210 答:略  【设计意图】教师要把握讲授与学生自主学习合作探究的量与度,要引导学生经历、体验新知的发  现、生成、应用的过程,对于需要学生完成的操作、尝试、猜想等探究活动教师要放手让学生去做。在教师启发性问题的引导下,结合多媒体给出的图形,经过独立思考、合作交流等手段探究出。例题学习重点是引导学生分析思路方法,分析知识运用,有规范的板书和推理过程,解题后归纳其中体现的数学思想方法和注意问题。  【处理手段】在黑板上将整个过程展示给学生,让学生有一个整体感、有一个初步的认识,并进一  步让学生感受一下画移求答的过程。  自主学习基本概念:  【师】我们顺利解决了上述z的最值问题,其实这就是一个简单的线性规划问题。现在请大家打开课本88页,阅读第二自然段,学习一些基本概念。 【生】阅读教科书,填写学案。  关于x,y的一次不等式或方程组成的不等式组
关 键 词:
线性规划 问题 教学 设计
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:线性规划问题的教学设计
链接地址: https://www.wenku365.com/p-42226770.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开