数学人教版六年级下册《鸽巢原理》教案设计

(3页)

'数学人教版六年级下册《鸽巢原理》教案设计'
小学数学六年级下册第五单元《鸽巢原理》教案设计一、教学目标(一)知识与技能通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。(二)过程与方法结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。(三)情感态度和价值观在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。二、教学重难点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。三、教学准备多媒体课件。四、教学过程(一)游戏引入出示一副扑克牌。教师:今天老师要给大家表演一个“魔术”。取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。同学们相信吗?5位同学上台,抽牌,亮牌,统计。教师:这类问题在数学上称为鸽巢问题(板书)。因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。(二)探索新知1.教学例1。(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。教师:谁来说一说结果?预设:一个放3支,另一个不放;一个放2支,另一个放1支。(教师根据学生回答在黑板上画图表示两种结果)教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?教师:这句话里“总有”是什么意思?预设:一定有。教师:这句话里“至少有2支”是什么意思?预设:最少有2支,不少于2支,包括2支及2支以上。【设计意图】把教材中例1的“笔筒”改为“铅笔盒”,便于学生准备学具。且用画图和数的分解来表示上述问题的结果,更直观。通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。教师:谁来说一说结果?学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。(教师根据学生回答在黑板上画图表示四种结果)引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。假设法(反证法):教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。学生进行组内交流,再汇报,教师进行总结:如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。这就是平均分的方法。【设计意图】从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。教师:把5支铅笔放到4个铅笔盒里呢?引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢?……你发现了什么?引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。教师:上面各个问题,我们都采用了什么方法?引导学生通过观察比较得出“平均分”的方法。【设计意图】让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。总有一种花色,至少有2人选”。【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。(4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?2.教学例2。(1)课件出示例2。把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?先小组讨论,再汇报。引导学生得出仿照例1“平均分”的方法得出“如果每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。”(2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?11本呢?16本呢?教师根据学生的回答板书:7÷3=2……1      不管怎么放,总有一个抽屉里至少放进3本;8÷3=2……2      不管怎么放,总有一个抽屉里至少放进3本;10÷3=3……1     不管怎么放,总有一个抽屉里至少放进4本;11÷3=3……2     不管怎么放,总有一个抽屉里至少放进4本;16÷3=5……1     不管怎么放,总有一个抽屉里至少放进6本。教师:观察上述算式和结论,你发现了什么?引导学生得出“物体数÷抽屉数=商数……余数”“至少数=商数+1”。【设计意图】一步一步引导学生合作交流、自主探索,让学生亲身经历问题解决的全过程,增强学习的积极性和主动性。(三)巩固练习1. 5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?2.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?3.5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?4.随意找13位老师,他们中至少有2个人的属相相同。为什么?(四)布置作业作业:第71页练习十三,第2题、第3题。
关 键 词:
鸽巢原理 学人 六年级 下册 原理 教案设计
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:数学人教版六年级下册《鸽巢原理》教案设计
链接地址: https://www.wenku365.com/p-42265301.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开