2019知识复习与总结(解析几何)

(22页)

'2019知识复习与总结(解析几何)'
知识复习与总结(解析几何)  解析几何复习  解析几何知识复习总结  本章以直线和圆为载体,揭示了解析几何的基本概念和方法。 1、直线的倾斜角:定义:在平面直角坐标系中,对于一条与x轴相交的直线l,如果把x轴绕着交点按逆时针方向转到和直线l重合时所转的最小正角记为,那么就叫做直线的倾斜角。当直线l与x轴重合或平行时,规定倾斜角为0;倾斜角的范围0,。 [题目 1] 直线xcos3y20的倾斜角的范围是______________; [题目2] 过点P(3,1),Q(0,m)的直线的倾斜角的范围[范围是______  23,3],那么m值的 2、直线的斜率:定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k,即k=tan(≠90°);倾斜角为90°的直线没有斜率;斜率公式:经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为k [题目3] 两条直线钭率相等是这两条直线平行的____________条件; [题目4] 实数x,y满足3x2y50 (1x3),则为______ [题目5] 函数f(θ)=y1y2x1x2;应用:证明三点共线: kABkBC。  x1x2y的最大值、最小值分别x 3、直线的方程:点方向式:已知直线过点(x0,y0),其一个方向向量是d(u,v),则当uv0时。  xx0yy0直线方程为,它不包括垂直于坐标轴的直线。点法向式:已知直线过点(x0,y0),其一uv个法向量是n(a,b)k,则直线方程为a(xx0)b(yy0)0,它可表示所有直线。点斜式:已知直线过点(x0,y0)斜率为k,则直线方程为yy0k(xx0),它不包括垂直于x轴的直线。斜截式:已知直线在y轴上的截距为b和斜率k,则直线方程为ykxb,它不包括垂直于x轴的直线。一般式:任何直线均可写成AxByC0(A,B不同时为0)的形式。  提醒:(1)直线方程的各种形式都有局限性.;(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为1或直线过原点。  sin1的最大值为_________,最小值为_________. cos2第 1 页 共 14 页  解析几何复习 [题目6] 过点A(1,4),且在坐标轴上截距相等的直线共有_________条 [题目7] 已知直线l的方程为3x4y120,则与l平行,且过点的直线方程是______; [题目8] 若曲线ya|x|与yxa(a0)有两个公共点,则a的取值范围是_______;  4.设直线方程的一些常用技巧:知直线纵截距b,常设其方程为ykxb;知直线横截距x0,常设其方程为xmyx0(它不适用于斜率为0的直线);知直线过点(x0,y0),当斜率k存在时,常设其方程为yk(xx0)y0,当斜率k不存在时,则其方程为xx0;与直线l:AxByC0平行的直线可表示为AxByC10;与直线l:AxByC0垂直的直线可表示为  BxAyC10.  提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。  5、点到直线的距离及两平行直线间的距离: 点P(x0,y0)到直线AxByC0的距离dAx0By0CAB22;  两平行线l1:AxByC10,l2:AxByC20间的距离为dC1C2AB22。  6、直线l1:A1xB1yC10与直线l2:A2xB2yC20的位置关系: 平行A; 1B2A2B10且B1C2B2C10相交A1B2A2B10;特别是垂直A1A2B1B20。 重合A1B2A2B10且B1C2B2C10。  提醒:  A1B1C1ABABC、11、111仅是两直线平行、相交、重合的充分不必要A2B2C2A2B2A2B2C2条件!为什么?在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线。  第 2 页 共 14 页  解析几何复习 [题目9] 设直线l1:xmy60和l2:(m2)x3y2m0,当m=_______时l1∥l2;当m=________时l1l2;当m_________时l1与l2相交;当m=_________时l1与l2重合; [题目10] 两条直线axy40与xy20相交于第一象限,则实数a的取值范围是____; [题目11] 设a,b,c分别是△ABC中∠A、∠B、∠C所对边的边长,则直线sinAxayc0与bxsinBysinC0的位置关系是_________; l[题目12] 已知点P1(x1,y1)是直线l:f(x,y)0上一点,P2(x2,y2)是直线外一点,则方程f(x,y)f(x1,y1)f(x2,y2)=0所表示的直线与l的关系是_________; [题目13] 直线l过点,且被两平行直线3xy60和3xy30所截得的线段长为9,则直线l的方程是________; 7、两直线的交角  直线l1与l2的夹角:是指l1与l2相交所成的四个角的最小角(或不大于直角的角),它的取值范围  是0;  2设两直线方程分别为:  l1:yk1xb1l1:A1xB1yC10l2:yk2xb2或l2:A2xB2yC20  A1A2B1B2A12B12A22B22|或tank2k1或ABA2B1;  tan121k2k1A1A2B1B2①为l1和l2的夹角,则cos|②当1k1k20或A1A2B1B20时,90o;  注意:上述与k有关的公式中,其前提是两直线斜率都存在,而且两直线互不垂直;当有一条直  线斜率不存在时,用数形结合法处理。  提醒:解析几何中角的问题常用到角公式或向量知识求解。 [题目14] 已知点M是直线2xy40与x轴的交点,把直线l绕点M逆时针方向旋转45°,得到的直线方程是______ 8、对称问题——代入法: 提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解。  第 3 页 共 14 页  解析几何复习 [题目15]已知点M(a,b)与点N关于x轴对称,点P与点N关于y轴对称,点Q与点P关于直线xy0对称,则点Q的坐标为_______; [题目16] 已知直线l1与l2的夹角平分线为yx,若l1的方程为axbyc0(ab0),那么l2的方程是___________; [题目17] 点A关于直线l的对称点为B(-2,7),则l的方程是_________; [题目18]已知一束光线通过点A,经直线l:3x-4y+4=0反射。如果反射光线通过点B,则反射光线所在直线的方程是_________; [题目19] 已知ΔABC顶点A(3,-1),AB边上的中线所在直线的方程为6x+10y-59=0,∠B的平分线所在的方程为x-4y+10=0,求BC边所在的直线方程; [题目20] 直线2x―y―4=0上有一点P,它与两定点A、B的距离之差最大,则P的坐标是______; 9、圆的方程:  2⑴圆的标准方程:xaybr。  22 ⑵圆的一般方程
关 键 词:
2019 知识 复习 总结 解析几何
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:2019知识复习与总结(解析几何)
链接地址: https://www.wenku365.com/p-42265896.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开