数学人教版六年级下册鸽巢原理

(4页)

'数学人教版六年级下册鸽巢原理'
第1课时  鸽巢问题(1)【教学内容】 最简单的鸽巢问题(教材第68页例1和第69页例2)。 【教学目标】 1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。 2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。 【重点难点】 了解简单的鸽巢问题,理解“总有”和“至少”的含义。 【教学准备】 实物投影,每组3个文具盒和4枝铅笔。 【情景导入】 教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生 年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。通过今天的学习,我们掌握了“鸽巢问题”之后,你 就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。(板书课题:鸽巢问题) 教师:通过学习,你想解决哪些问题? 根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题” 能解决哪些问题?怎样运用“鸽巢问题”解决问题? 【新课讲授】 1. 教师用投影仪展示例1的问题。 同学们手中都有铅笔和文具盒,现在分小组形式动手操作:把四支铅笔放进三个标有序号的文具盒中,看看能得出什么 样的结论。 组织学生分组操作,并在小组中议一议,用铅笔在文具盒里放一放。 教师指名汇报。 学生汇报时会说出:1号文具盒放4枝铅笔,2号、3号文具盒均放0枝铅笔。 教师:不妨将这种放法记为(4,0,0)。〔板书:(4,0,0)〕 教师提出:(4,0,0)(0,4,0)(0,0,4,)为一种放法。 教师:除了这种放法,还有其他的方法吗?教师再指名汇报。学生会有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四 种不同的方法。教师板书。 教师:还有不同的放法吗? 教师:通过刚才的操作,你能发现什么?(不管怎么放,总有一个盒子里至少有2枝铅笔。) 教师:“总有”是什么意思?(一定有) 教师::就是不能少于2枝。(通过操作让学生充分体验感受) 教师进一步引导学生探究:把5枝铅笔放进4个文具盒,总有一个文具盒要放进几枝铅笔?指名学生说一说,并且说一说.学生思考——组内交流——汇报 教师:哪一组同学能把你们的想法汇报一下? 学生会说:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝 铅笔。 教师:你能结合操作给大家演示一遍吗?(学生操作演示) 教师:同学们自己说说看,同桌之间边演示边说一说好吗? 教师:这种分法,实际就是先怎么分的? 学生:平均分。 教师:为什么要先平均分?(组织学生讨论) 学生汇报:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在哪个盒子里,一定会出现“ 总有一个盒子里一定至少有2枝”。 这样分,只分一次就能确定总有一个盒子至少有几枝笔了? 教师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说) 教师:哪位同学能把你的想法汇报一下? 学生一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。 师:把6枝笔放进5个盒子里呢?还用摆吗? 生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。 师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?…… 教师:你发现什么? 学生:铅笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。 教师:你们的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。把100枝铅笔放进99个文具盒里会有什么结论? 一起说。 巩固练习:教材第68页“做一做”。 A组织学生在小组中交流解答。 B指名学生汇报解答思路及过程。 2. 教学例2。 ①出示题目:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请同学们小组合作探究。探究时,可以 利用每组桌上的7本书。 活动要求: a.每人限独立思考。b.把自己的想法和小组同学交流。c.如果需要动手操作,可以利用每桌上的7本书,要有分工,并 要全面考虑问题。(谁分铅笔,谁当抽屉,谁记录等)d.在全班交流汇报。(师巡视了解各种情况) 学生汇报。 哪个小组愿意说说你们的方法?把你们的发现和大家一起分享,学生可能会有以下方法: a. 动手操作列举法。 学生:通过操作,我们把7本书放进3个抽屉,总有一个抽屉至少放进3本书。 b.数的分解法。 把7分解成三个数,有(7,0),(6,1),(5,2),(4,3)四种情况。在任何一种情况下,总有一个数不小于3。 教师:通过动手摆放及把数分解两种方法,我们知道把7本书放进3个抽屉,总有一个抽屉至少放进几本书?(3本) ②教师质疑引出假设法。 教师:同学们通过以上两种方法,知道了把7本书放进3个抽屉,总有一个抽屉至少放进3本书,但随着书的本数越多, 数据变大,如:要把155本书放进3个抽屉呢?用列举法、数的分解法会怎么样?(繁琐)我们能不能找到一种适用各种 数据的方法呢?请同学们想想。 板书:7本3个2本……余1本(总有一个抽屉里至少有3本书) 8本3个2本……余2本(总有一个抽屉里至少有3本书) 10本3个3本……余1本(总有一个抽屉里至少有4本书) 师:2本、3本、4本是怎么得到的? 生:完成除法算式。 7÷3=2本……1本(商加1) 8÷3=2本……2本(商加1) 10÷3=3本……1本(商加1) 师:观察板书你能发现什么? 学生:“总有一个抽屉里的至少有3本”,只要用“商+1”就可以得到。 师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 学生:“总有一个抽屉里至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。 学生有可能会说:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪 两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。 师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论、交流、说理活动。 可能有三种说法:a. 我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。 b.把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里 至少有2本书”。 c.我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2” 。 教师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢? 学生回答:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本 书”了。 教师讲解:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄里 克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉 原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一
关 键 词:
学人 六年级 下册 原理
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:数学人教版六年级下册鸽巢原理
链接地址: https://www.wenku365.com/p-42277505.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开