初级中学二次函数教学教案题及其答案解析

(9页)

'初级中学二次函数教学教案题及其答案解析'
*.一、 选择题:1. 抛物线的对称轴是( )A. 直线 B. 直线 C. 直线 D. 直线2. 二次函数的图象如右图,则点在( )A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限3. 已知二次函数,且,,则一定有( )A. B. C. D. ≤04. 把抛物线向右平移3个单位,再向下平移2个单位,所得图象的解析式是,则有( )A. , B. ,C. , D. ,5. 已知反比例函数的图象如右图所示,则二次函数的图象大致为( ) 6. 下面所示各图是在同一直角坐标系内,二次函数与一次函数的大致图象,有且只有一个是正确的,正确的是( ) 7. 抛物线的对称轴是直线( )A. B. C. D. 8. 二次函数的最小值是( )A. B. 2 C. D. 19. 二次函数的图象如图所示,若,,则( )A. ,,B. ,,C. ,,D. ,,二、填空题:10. 将二次函数配方成的形式,则y=______________________.11. 已知抛物线与x轴有两个交点,那么一元二次方程的根的情况是______________________.12. 已知抛物线与x轴交点的横坐标为,则=_________.13. 请你写出函数与具有的一个共同性质:_______________.14. 有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:15. 已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.16. 如图,抛物线的对称轴是,与x轴交于A、B两点,若B点坐标是,则A点的坐标是________________. 三、解答题:1. 已知函数的图象经过点(3,2).(1)求这个函数的解析式;(2)当时,求使y≥2的x的取值范围.2. 如右图,抛物线经过点,与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).(1)由已知图象上的三点坐标,求累积利润s(万元)与销售时间t(月)之间的函数关系式;(2)求截止到几月累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?提高题1. 如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计). 货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?2. 某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元).(1)用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;(2)求y与x之间的二次函数关系式;(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由;(4)请把(2)中所求的二次函数配方成的形式,并据此说明:当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?参考答案一、选择题:题号123456789答案DDAADDDBD二、填空题:1. 2. 有两个不相等的实数根 3. 14. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)5. 或或或6. 等(只须,)7. 8. ,,1,4三、解答题:1. 解:(1)∵函数的图象经过点(3,2),∴. 解得. ∴函数解析式为.(2)当时,. 根据图象知当x≥3时,y≥2. ∴当时,使y≥2的x的取值范围是x≥3.2. 解:(1)由题意得. ∴. ∴抛物线的解析式为.(2)∵点A的坐标为(1,0),点B的坐标为. ∴OA=1,OB=4. 在Rt△OAB中,,且点P在y轴正半轴上. ①当PB=PA时,. ∴. 此时点P的坐标为.②当PA=AB时,OP=OB=4 此时点P的坐标为(0,4).3. 解:(1)设s与t的函数关系式为, 由题意得或 解得 ∴.(2)把s=30代入,得 解得,(舍去) 答:截止到10月末公司累积利润可达到30万元.(3)把代入,得 把代入,得 . 答:第8个月获利润5.5万元.4. 解:(1)由于顶点在y轴上,所以设这部分抛物线为图象的函数的解析式为. 因为点或在抛物线上,所以,得. 因此所求函数解析式为(≤x≤).(2)因为点D、E的纵坐标为,所以,得. 所以点D的坐标为,点E的坐标为. 所以. 因此卢浦大桥拱内实际桥长为(米).5. 解:(1)∵AB=3,,∴. 由根与系数的关系有.∴,.∴OA=1,OB=2,.∵,∴.∴OC=2. ∴,.∴此二次函数的解析式为.(2)在第一象限,抛物线上存在一点P,使S△PAC=6.解法一:过点P作直线MN∥AC,交x轴于点M,交y轴于N,连结PA、PC、MC、NA. ∵MN∥AC,∴S△MAC=S△NAC= S△PAC=6.由(
关 键 词:
初级中学 二次 函数 教学 教案 及其 答案 解析
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:初级中学二次函数教学教案题及其答案解析
链接地址: https://www.wenku365.com/p-43429615.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开