初级中学行程问答题-主题材料讲解

(15页)

'初级中学行程问答题-主题材料讲解'
'\初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是: 路程=速度×时间;速度=路程÷时间;时间=路程÷速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。1. 单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从提高到,运行时间缩短了。甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为,那么列车在两城市间提速前的运行时间为,提速后的运行时间为.【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间.【列出方程】. 例2:某铁路桥长1000,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1,整列火车完全在桥上的时间共。求火车的速度和长度。【分析】如果设火车的速度为,火车的长度为,用线段表示大桥和火车的长度,根据题意可画出如下示意图: y 1000 60x1000 y 40x【等量关系式】火车行驶的路程=桥长+火车长;火车行驶的路程=桥长-火车长 【列出方程组】 举一反三:1.小明家和学校相距。小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60,再乘公共汽车到学校,发现比步行的时间缩短了,已知公共汽车的速度为,求小明从家到学校用了多长时间。2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高.求提速后的火车速度。(精确到)3.徐州至上海的铁路里程为,从徐州乘”C “字头列车A,”D”字头列车B都可直达上海,已知A车的速度为B车的2倍,且行驶的时间比B车少.求A车的速度及行驶时间。(同学们可能会认为这是双人行程问题,其实这题的类型可归结于例1的类型,把B车的速度看成是A提速后的速度,是不是也可看成单人单程的问题呀!)4.一列匀速前进的火车用15秒的时间通过了一个长300米的隧道(即从车头进入隧道到车尾离开隧道)。又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,(光速)1)求这列火车的长度2)如果这列火车用25秒的时间通过了另一个隧道,求这个隧道的长 2.单人双程(等量关系式:来时的路程=回时的路程):例1:某校组织学生乘汽车去自然保护区野营,先以的速度走平路,后又以的速度爬坡,共用了;返回时汽车以的速度下坡,又以的速度走平路,共用了.学校距自然保护区有多远。【分析】如果设学校距自然保护区为,由题目条件:去时用了,则有些同学会认为总的速度为,然后用去时走平路的速度+去时爬坡的速度=总的速度,得出方程,这种解法是错误的,因为速度是不能相加的。不妨设平路的长度为,坡路的长度为,则去时走平路用了,去时爬坡用了,而去时总共用了,这时,时间是可以相加的;回来时汽车下坡用了,回来时走平路用了,而回来时总共用了.则学校到自然保护区的距离为。【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间 回来时走平路用的时间+回来时爬坡用的时间=回来时用的总时间【列出方程组】注:单人双程的行程问题抓住来时的路程=回时的路程、路程=速度×时间,再把单人单程的行程问题练练熟就ok了,题型跟单人单程的题型差不多,把上面的例题弄懂,这里就不多做练习了。 3.双人行程:(Ⅰ)单块应用:只单个应用同向而行或背向而行或相向而行或追击问题。1)同时同地同向而行:A,B两事物同时同地沿同一个方向行驶例:甲车的速度为,乙车的速度为,两车同时同地出发,同向而行。经过多少时间两车相距。【分析】如果设经过后两车相距,则甲走的路程为,乙走的路程为,根据题意可画出如下示意图: 80x km 乙 甲 60x km 280km【等量关系式】甲车行驶的距离+280=乙车行驶的距离【列出方程】2)同时同地背向而行:A,B两事物同时同地沿相反方向行驶例:甲车的速度为,乙车的速度为,两车同时同地出发,背向而行。经过多少时间两车相距。【分析】如果设经过后两车相距,则甲走的路程为,乙走的路程为,根据题意可画出如下示意图: 甲 乙 60x km 80x km 280 km【等量关系式】甲车行驶的距离+乙车行驶的距离=280【列出方程】3)同时相向而行(相遇问题):例:甲,乙两人在相距的A,B两地相向而行,乙的速度是甲的速度的2倍,两人同时处发后相遇,求甲,乙两人的速度。【分析】如果设甲的速度为,则乙的速度为,甲走过的路程为,乙走过的路程为,根据题意可画出如下示意图:甲 1.5x km 1.5×2x km 乙 A B 10 km 280 km【等量关系式】甲车行驶的距离+乙车行驶的距离=10【列出方程】4)追及问题:例:一对学生从学校步行去博物馆,他们以的速度行进后,一名教师骑自行车以的速度按原路追赶学生队伍。这名教师从出发到途中与学生队伍会合共用了多少时间?【分析】如果设这名教师从出发到途中与学生队伍会合共用了,则教师走过的路程为,学生走过的路程为教师出发前走过的路程加上教师出发后走过的路程,而学生在教师出发前走过的路程为,学生在教师出发后走过的路程为,又由于教师走过的路程等于学生走过的路程。根据题意可画出如下示意图: 学生 5x km 教师 15x km 【等量关系式】教师走过的路程=学生在教师出发前走过的路程+学生在教师出发后走过的路程【列出方程】5)不同时同地同向而行(与追击问题相似):例:甲,乙两人都从A地出发到B地,甲出发后乙才从A地出发,乙出发后甲,乙两人同时到达B地,已知乙的速度为,问,甲的速度为多少?【分析】如果设甲的速度为,则乙出发前甲走过的路程为,乙出发后甲走过的路程为,甲走过的路程等于乙出发前甲走过的路程加上乙出发后甲走过的路程,而乙走过的路程为,甲走过的路程等于乙走过的路程。根据题意可画出如下示意图: 甲 x km 3x km 乙 50×3 km 【等量关系式】乙走过的路程=乙出发前甲走过的路程加上乙出发后甲走过的路程【列出方程】6)不同时相向而行例:甲,乙两站相距,一列慢车从甲站出发,速度为;一列快车从乙站出发,速度为。两车相向而行,慢车先出发,快车开出后
关 键 词:
初级中学 行程 问答题 主题 材料 讲解
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:初级中学行程问答题-主题材料讲解
链接地址: https://www.wenku365.com/p-43429620.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开