山西省山西大学附属中学2018_2019学年高二数学下学期3月模块诊断试题文(含解析)

(20页)

'山西省山西大学附属中学2018_2019学年高二数学下学期3月模块诊断试题文(含解析)'
山西省山西大学附属中学2018-2019学年高二数学下学期3月模块诊断试题 文(含解析)一、选择题(本大题共12个小题,每小题5分,共60分,请把答案写在答题纸上)1.下列导数运算正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据导数的求导法则和求导公式分别进行验证后可得正确的结果.【详解】选项A中,由于,所以A不正确;选项B中,由于,所以B不正确;选项C中,由于,所以C正确;选项D中,由于,所以D不正确.故选C.【点睛】本题考查导数的运算,解题的关键是熟记求导公式和求导法则,属于简单题.2.已知的导函数的图象如图所示,那么函数的图象最有可能的是( )A. B. C. D. 【答案】A【解析】试题分析:根据导函数图象可知,函数在(-∞,0),(2,+∞)上单调增,在(0,2)上单调减,从而可得结论. 解:根据导函数图象可知,函数在(-∞,0),(2,+∞)上单调增,在(0,2)上单调减,由此可知函数f(x)的图象最有可能的是A,故选A考点:导数的符号与函数单调性关系点评:本题考查导函数与原函数图象的关系,解题的关键是利用导函数看正负,原函数看增减,属于基础题3.已知函数,则的增区间为( )A. B. C. D. 【答案】B【解析】【分析】求出导函数,解不等式可得函数的单调增区间.【详解】∵,∴.由,得,解得.∴函数的增区间为.故选B.【点睛】用导数求函数单调区间的步骤:①求出函数的定义域;②求出导函数;③由可得函数的单调增区间;由可得函数的单调减区间.解题时注意导函数的符号和函数单调性间的关系,属于基础题.4.函数 有( )A. 极大值5,无极小值 B. 极小值,无极大值C. 极大值5,极小值 D. 极大值5,极小值【答案】A【解析】试题分析:,所以增区间为,减区间为,所以当时有极大值,无极小值考点:函数导数与极值5.已知函数的导函数为,且满足关系式,则的值等于( )A. B. C. D. 【答案】A【解析】【分析】先求出,然后利用赋值法得到,进而得到的解析式,于是可求得的值.【详解】∵,∴,令得,解得.∴,∴.故选A.【点睛】本题考查导函数和函数值的求法,解题的关键是正确理解的意义,注意是个数,考查理解和应用能力,属于基础题.6.若函数存在极值,则实数的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】先求出函数不存在极值,即函数单调时的范围,即可根据其补集得出结果.【详解】若函数不存极值,则函数单调,当单调递增时,只需恒成立,即恒成立,因此;当单调递减时,只需恒成立,即恒成立,因此;因为函数存在极值,所以函数不单调,因此.故选A【点睛】本题主要考查导数的应用,根据函数有极值求参数时,可先求函数单调时参数的范围,进而可求出结果,属于常考题型.7.已知函数,则曲线上任意一点处的切线的倾斜角的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】求出,然后再求出的值域,即得到切线斜率的取值范围,然后可得倾斜角的范围.【详解】∵,∴,当且仅当,即时等号成立.∴,又,∴,即倾斜角的取值范围是.故选C.【点睛】本题考查导数几何意义及其应用,解题的关键是求出导函数的值域,然后根据斜率与倾斜角的关系得到所求,考查综合运用知识解决问题的能力,属于基础题.8.函数的图象在处的切线方程为,则的值为( )A. B. C. D. 【答案】B【解析】【分析】根据导数的几何意义求出切线的斜率,进而得到的值,然后再求出切点坐标,代入切线方程后可求得的值.【详解】∵,∴.由题意得,解得,∴.∴当时,,故切点坐标为,将切点坐标代入切线方程得,解得.故选B.【点睛】利用导数的几何意义求切线方程时,一是要注意“曲线在点处的切线”和“曲线过点的切线”两种说法的区别;二是解题时要注意切点既在曲线上又在切线上这一条件的应用.考查计算能力,属于基础题.9.定义在上的函数满足:,,则不等式(其中为自然对数的底数)的解集为( )A. B. C. D. 【答案】A【解析】令而等价于,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等10.若函数在区间内任取有两个不相等的实数,,不等式恒成立,则的取值范围是( )A. B. C. D. 【答案】C【解析】将化为,因为恒成立,所以在区间内单调递增,即在区间内恒成立,即在区间内恒成立,而,所以;故选C.点睛:本题的难点在于如何根据合理构造函数,且判定新函数的单调性,要求在做题中多积累、多总结.11.已知,则的最小值为( )A. B. C. D. 【答案】B【解析】【分析】由题意可化为,故得.令,,则表示直线上的点与曲线上的点的最小距离的平方.利用导数的几何意义求出切点,再利用点到直线的距离公式即可得出所求结论.【详解】由题意,可化为,故得.令,则表示直线上的点与曲线上的点的最小距离的平方.设直线与曲线相切于点,不妨取.∵,∴,解得.∴切点,∴,解得,∴切点到直线的距离,∴的最小值为.故选B.【点睛】解答本题的关键在于读懂题意,将所求转化为点到直线的距离的平方的最小值求解,即转化为两条平行线间的距离求解,体现了转化和数形结合在解题中的应用,具有一定的难度和综合性,考查对导数几何意义的理解和应用.12.已知,是的导函数,则 ( )A. 8056 B. 4028 C. 1 D. 2【答案】D【解析】【分析】先令,判断出函数与的奇偶性,即可求出结果.【详解】因为,令,所以,故函数为奇函数;所以,即;又,所以,即函数为偶函数,所以,即;故.故选D【点睛】本题主要考查函数奇偶性的应用,熟记函数奇偶性即可,属于常考题型.二、填空题(本大题共4个小题,每小题5分,共20分,请把答案写在答题纸上)13.函数的单调减区间是_____________.【答案】【解析】【分析】求出,然后通过解不等式可得单调减区间.【详解】由题意得函数的定义域为R.∵,∴,由,解得.∴函数的单调减区间是.故答案为:.【点睛】本题属于基础题,考查函数单调区间的求法,解题的关键是正确求出导函数和解不等式.14.设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为_____.【答案】【解析】试题分
关 键 词:
山西省 山西大学 附属中学 2018 _2019 年高 数学 学期 模块 诊断 试题 解析
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:山西省山西大学附属中学2018_2019学年高二数学下学期3月模块诊断试题文(含解析)
链接地址: https://www.wenku365.com/p-43438750.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开