北师大七年级(上)第四章:动点、动角模型(无答案)

(21页)

'北师大七年级(上)第四章:动点、动角模型(无答案)'
动点、动角模型专题一、动点模型【例1】A、B两点在数轴上的位置如图所示,0为原点,现A、B两点分别以1个单位长度 /秒、4个单位长度/秒的速度同时向左运动。(1) 儿秒后,原点0恰好在两点正中间?(2) 几秒后,恰好有0A:OB=1: 2 ?A O B I 1 2 3 1 >A O B【练习1】己知数轴上两点A、B对应的数分别为3,点P为数轴上一动点,其对应的数 为X。 1 >-3 0 12【练习1】己知,如图,线段AB=12cm, M是AB ±一定点,C、D两点分别从M、B出发以 lcm/s. 3cm/s的速度沿线段BA向左运动,在运动过程中,点C始终在线段AM ±,点D始 终在线段BM上,点E、F分别是线段AC和MD的中点。(1) 当点C、D运动了 2s,求EF的长度;(2) 若点C、D运动时,总是有MD=3AC,求AM的长。■ 1 1 1 1 1 ■A e C M F D B【练习2】如图,数轴上点A、C对应的数分别是a, c, Ma, c满足+冲+ (c —=0,点B对应的数是(1) 求数 a, c;(2) 点A、B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为 每秒1个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点 A、B两点到原点O的距离相等时,求t的值。【例2】如图,若点A在数轴上对应的数为a,若点B在数轴上对应的数为b,且a, b满足:d + 2| + (b-1)—。(1) 求线段AB的长;(2) 点C在数轴上对应的数为x,且x是方程2兀-1=丄兀+ 2的解,在数轴上是否存在点P,2使PA+PB二PC,若存在,直接写出点P对应的数;若不存在,请说明理由。(3) 在(1)的条件下,将点B向右平移5个单位长度至此时在原点0处放一个挡板, 一小球甲从点A处以1个单位长度/秒的速度向左运动,同时另一小球乙从B'处以2个单位 长度/秒的速度也向左运动,在碰到挡板后以原来的速度向相反方向运动,设运动时间为t(秒),求甲、乙小球到原点的距离相等时经过的时间。【例3】已知数轴上两点A、B对应的数分别为?1、3,点P为数轴上一动点,其对应的数为XoAO P B? ??????? A?2?1 () 3(1) 若点P到点A,点B的距离相等,求点P对应的数;(2) 数轴上是否存在点P,使点P到点A、点B的距离Z和为6?若存在,请求出x的值; 若不存在,说明理由。(3) 点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6 个单位长度/分的速度从0点向左运动。当遇到A时,点P立即以同样的速度向右运动,并 不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?【练习1】如图,ZAOB的边0A上有一动点P,从距离0点18cm的点M处出发,沿线段 M0,射线0B运动,速度为2cm/s;动点Q从点0出发,沿射线0B运动,速度为lcm/s, P、Q同时出发,设运动时间是t (s)o(1) 当点P在M0上运动时,P0= cm (用含t的代数式);(2) 当点P在M0上运动时,t为何值,能使0P=OQ?(3) 若点Q运动到距离0点16cm的点N停止,在点Q停止运动前,点P能否追上点Q? 如果是,求出t的值;如果不能,请说明理由。0 0N【例4】如图,若点A在数轴上对应的数为a,若点B在数轴上对应的数为b,点A在负半 轴,且|«| = 3, b是最小的正整数,(1) 求线段AB的长;(2) 点C在数轴上对应的数为X,且x是方程2兀+1=3无-4的解,在数轴上是否存在点P, 使pa+pb=Lbc+ab,若存在,求出点P对应的数;若不存在,请说明理由。2(3) 如图Q是B点右侧一点,QA中点为M, N为QB的四等分点且靠近Q点,当Q在B1 3 2的右侧运动时,有两个结论:①的值不变;②QM--BN的值不变,其屮只 有一个是正确的结论,请你判断正确的结论,并求出其值。~A 0 ―B > A O B M N Q(II)题图 (HI)题图【练习1】如图,射线0M上有三点A、B、C,满足OA=20cm, AB=60cm, BC=10cm,点P 从0点出发沿0M方向以lcm/s的速度匀速运动,点Q从点C出发在线段CO上向点0匀 速运动(点Q运动到点0时停止运动),两点同时出发。(1) 当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;(2) 若点Q的运动速度为3cm/s,经过多长时间P、Q两点相距70cm?当点P运动到线段AB±时,分别取0P和AB的屮点E、F,求OB-APEF的值。【练习2】如图,线段AB=24,动点P从A出发,以每秒2个单位长度的速度沿射线AB运 动,M为AP的屮点。(1) 出发多少秒后,PB=2AM?(2) 当P在线段AB上运动时,试说明2BM-BP为定值。(3) 当P在AB的延长线上运动时,N为BP的中点,下列两个结论:①MN的长度不变; ②MA+PN的值不变。选择一个正确的结论,并求出其值。【例5】如图? 已知数轴上两点A、B对应的数分别为?1、3,点P为数轴上的一动点,其 对应的数为X。P ”,图1 图2(1) PA= , PB= (用含x的式子表示);(2) 在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由。(3) 如图②,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向 左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中 点,问:AB-BP的值是否发生变化?请说明理由。MN(4) 当点P以每分钟1个单位长度的速度从0点向左运动吋,点A以每分钟5个单位长度 的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问:它们同时出发,几分 钟时间点P到点A、点B的距离相等?【练习1】已知线段AB=m, CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若 ”72_2刈=一(6 — 斤)2,(1) 求线段AB、CD的长;(2) M> N分别为线段AC、BD的中点,若BC=4,求MN;(3) 当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两PA — PR PA 4- PR个结论:① 是定值;② 是定值,请选择正确的一个并加以证明。PC PCA BCD【练习2]点A在数轴上对应的数为a,点B对应的数为b,且a、b满足山+ 6|+0-4『=0.(1) 求线段AB的长;(2) 如图①,点C在数轴上对应的数为x,且是方程x+l=-x-5的根,在数轴上是否存4在点P使PA + PB = -BC + AB ?若存在,求出点P对应的数;若不存在,请说明理由。4(3) 如图②,若P是B点右侧一点,PA中点为M, N为
关 键 词:
北师大 年级 第四 模型 答案
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:北师大七年级(上)第四章:动点、动角模型(无答案)
链接地址: https://www.wenku365.com/p-43447743.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开