数列通项公式求法大全

(5页)

'数列通项公式求法大全'
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。一、直接法根据数列的特征,使用作差法等直接写出通项公式。二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前项和与的关系,求数列的通项可用公式求解.(注意:求完后一定要考虑合并通项)例1.①已知数列的前项和满足.求数列的通项公式.②已知数列的前项和满足,求数列的通项公式.③ 已知等比数列的首项,公比,设数列的通项为,求数列的通项公式。三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。也可以猜想出规律,然后正面证明。四、累加(乘)法对于形如型或形如型的数列,我们可以根据递推公式,写出n取1到n时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。例4. 若在数列中,,,求通项。例5. 在数列中,,(),求通项。五、取倒(对)数法a、这种类型一般是等式两边取对数后转化为,再利用待定系数法求解b、数列有形如的关系,可在等式两边同乘以先求出c、解法:这种类型一般是等式两边取倒数后换元转化为。例6..设数列满足求例7 设正项数列满足,(n≥2).求数列的通项公式.变式:1.已知数列{an}满足:a1=,且an=求数列{an}的通项公式;2、若数列的递推公式为,则求这个数列的通项公式。3、已知数列{}满足时,,求通项公式。4、已知数列{an}满足:,求数列{an}的通项公式。5、若数列{a}中,a=1,a= n∈N,求通项a. 六、迭代法迭代法就是根据递推式,采用循环代入计算.七、待定系数法:1、通过分解常数,可转化为特殊数列{a+k}的形式求解。一般地,形如a=p a+q(p≠1,pq≠0)型的递推式均可通过待定系数法对常数q分解法:设a+k=p(a+k)与原式比较系数可得pk-k=q,即k=,从而得等比数列{a+k}。例9、数列{a}满足a=1,a=a+1(n≥2),求数列{a}的通项公式。练习、1数列{a}满足a=1,,求数列{a}的通项公式。2、已知数列满足,且,求.2、递推式为(p、q为常数)时,可同除,得,令从而化归为(p、q为常数)型.、例10.已知数列满足, ,求.3、形如解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,从而转化为是公比为的等比数列。例11:设数列:,求.4、形如解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,z.从而转化为是公比为的等比数列。例12:设数列:,求.八:不动点法,形如 解法:如果数列满足下列条件:已知的值且对于,都有(其中p、q、r、h均为常数,且),那么,可作特征方程,当特征方程有且仅有一根时,则是等差数列;当特征方程有两个相异的根、时,则是等比数列。例15:已知数列满足性质:对于且求的通项公式. 九:换元法:类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有规律性。例16 已知数列满足,求数列的通项公式。
关 键 词:
数列 公式 求法 大全
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:数列通项公式求法大全
链接地址: https://www.wenku365.com/p-43457269.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开