mathematical.Analysis.课后习题解答(Tom M.Apostol).pdf

mathematical.Analysis.课后习题解答(Tom M.Apostol).pdf

ID:52428749

大小:2.32 MB

页数:299页

时间:2020-03-27

mathematical.Analysis.课后习题解答(Tom M.Apostol).pdf_第1页
mathematical.Analysis.课后习题解答(Tom M.Apostol).pdf_第2页
mathematical.Analysis.课后习题解答(Tom M.Apostol).pdf_第3页
mathematical.Analysis.课后习题解答(Tom M.Apostol).pdf_第4页
mathematical.Analysis.课后习题解答(Tom M.Apostol).pdf_第5页
资源描述:

《mathematical.Analysis.课后习题解答(Tom M.Apostol).pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、TheRealAndComplexNumberSystemsIntegers1.1Provethatthereisnolargestprime.Proof:Supposepisthelargestprime.Thenp!+1isNOTaprime.So,thereexistsaprimeqsuchthatq

2、p!+1⇒q

3、1whichisimpossible.So,thereisnolargestprime.Remark:Therearemanyandmanyproofsaboutit.Theproofthatwegivecomes

4、fromArchimedes287-212B.C.Inaddition,EulerLeonhard(1707-1783)findanothermethodtoshowit.Themethodisimportantsinceitdevelopstostudythetheoryofnumbersbyanalyticmethod.Thereadercanseethebook,AnIntroductionToTheTheoryOfNumbersbyLoo-KengHua,pp91-93.(ChineseVersion)1.2Ifnisapos

5、itiveinteger,provethealgebraicidentityXn−1nnkn−1−ka−b=(a−b)abk=0Proof:ItsufficestoshowthatXn−1nkx−1=(x−1)x.k=01Considertherighthandside,wehaveXn−1Xn−1Xn−1kk+1k(x−1)x=x−xk=0k=0k=0XnXn−1kk=x−xk=1k=0n=x−1.1.3If2n−1isaprime,provethatnisprime.Aprimeoftheform2p−1,wherepisprime

6、,iscalledaMersenneprime.Proof:Ifnisnotaprime,thensayn=ab,wherea>1andb>1.So,wehaveXb−12ab−1=(2a−1)(2a)kk=0whichisnotaprimebyExercise1.2.So,nmustbeaprime.Remark:ThestudyofMersenneprimeisimportant;itisrelatedwithsocalledPerfectnumber.Inaddition,therearesomeOPENprob-lemabo

7、utit.Forexample,isthereinfinitelymanyMersennenem-bers?Thereadercanseethebook,AnIntroductionToTheTheoryOfNumbersbyLoo-KengHua,pp13-15.(ChineseVersion)1.4If2n+1isaprime,provethatnisapowerof2.Aprimeofthe2mform2+1iscalledaFermatprime.Hint.Useexercise1.2.Proof:Ifnisanotapowe

8、rof2,sayn=ab,wherebisanoddinteger.So,2a+12ab+1and2a+1<2ab+1.Itimpliesthat2n+1isnotaprime.So,nmustbeapowerof2.Remark:(1)Intheproof,weusetheidentity2Xn−2x2n−1+1=(x+1)(−1)kxk.k=02Proof:Consider2Xn−22Xn−22Xn−2(x+1)(−1)kxk=(−1)kxk+1+(−1)kxkk=0k=0k=02Xn−12Xn−2=(−1)k+1xk+(−1)

9、kxkk=1k=02n+1=x+1.(2)ThestudyofFermatnumberisimportant;forthedetailsthereadercanseethebook,AnIntroductionToTheTheoryOfNumbersbyLoo-KengHua,pp15.(ChineseVersion)1.5TheFibonaccinumbers1,1,2,3,5,8,13,...aredefinedbytherecur-sionformulaxn+1=xn+xn−1,withx1=x2=1.Provethat(xn,

10、xn+1)=1andthatx=(an−bn)/(a−b),whereaandbaretherootsofthequadraticnequationx2−x−1=0.Proof:Letd=g.c.d.(xn,xn+1),thend

11、x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。