矩阵秩地研究与指导应用.doc

矩阵秩地研究与指导应用.doc

ID:56968449

大小:1.00 MB

页数:30页

时间:2020-07-29

矩阵秩地研究与指导应用.doc_第1页
矩阵秩地研究与指导应用.doc_第2页
矩阵秩地研究与指导应用.doc_第3页
矩阵秩地研究与指导应用.doc_第4页
矩阵秩地研究与指导应用.doc_第5页
资源描述:

《矩阵秩地研究与指导应用.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、矩阵秩的研究与应用[摘要]矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究的一个重要工具。矩阵理论是线性代数的主要组成部分,也是线性方程组的理论基础。而在矩阵的理论中,矩阵的秩是一个基本概念,也是矩阵最重要的数量特征之一,它在初等变换下是一个不变量。它反映矩阵固有特性的一个重要概念。矩阵一旦确定秩也就确定了。它是高等代数课程中的一个参考指标,其定义、性质、求法、应用等相关容在高等代数中出现的极为频繁,作用较大。本文首先介绍了矩阵秩的相关理论知识:即秩的几种不同定义,相关性质,以及矩阵秩的三种常见求法,并对三种求法做了一个简单的比较分

2、析。后面着重介绍了矩阵秩的应用部分,主要是其在线性代数中的应用和解析几何上的应用。这里就不细说了,具体容还得从文章中来了解。[1][2][3][关键词]:矩阵的秩,定义,性质,求法,应用,高等代数。矩阵秩的研究与应用1前言矩阵在高等代数理论中极其重要并且应用广泛,它是线性代数的核心,而矩阵的秩作为研究矩阵的一个重要工具,其秩的理论研究非常重要。更重要的是将它推广到实际应用中,那么我们目前在其应用方面的研究又达到了一个什么程度呢?本文主要是对矩阵秩的应用方面的一个总结,让学者对其有个更清晰的认识,使后面的学者对矩阵的学习更轻松,更全面。矩阵方面的理论是非常重要

3、的容,历年来许多学者对它都有研究,而且其中的部分理论有了很广泛的应用,例如矩阵分析法在企业战略管理、营销活动、供应链管理技术、教学效率评价、射击训练效果评价等方面都起到举足轻重的作用;不仅在本文中的线性代数和解析几何中的理论上的应用,而且在其他领域上也有更实际贴切的应用。如在控制论中,矩阵的秩可用来确定线性系统是否为可控制的,或可观的;此外,矩阵的秩在教学中还有更广泛的应用,如在测量平差中的应用。理论指导实践,所以我着重选择了矩阵秩在理论上的应用的部分来进行探讨,其意义更加广泛且深远。在前人研究的基础上,我主要是对其进行了一个归纳总结,并简单的说了些自己的感

4、想,希望大家能够从中有所收获。2矩阵的理论研究2.1矩阵秩的定义:秩的定义形式上看比较简单,但是难于理解为什么这样定义,有什么缘由?事实上矩阵秩的概念是从线性方程组中来的:给出个元一次方程组成的方程组,其中有些方程可以用别的方程来运算得出,因此这些方程去掉后,不影响方程的通解性。比如方程可以由以下两个方程相减得出因此由这三个方程组成的方程组与由后面两个方程组成的方程组是同解的,是多余的,可去掉。这样对于个元一次方程组成的方程组就可想办法去掉那些可用其他方程表示的方程,剩下相互独立的方程。例如高斯消元法来去掉,而剩下的那些独立的方程的个数就是这个方程组的秩,矩

5、阵的秩是从方程组的秩中来的,理解了这个就理解了秩的概念,这也是秩的几何意义。如果从向量的相关性的角度考虑,可以这样认为:是矩阵的行(列)向量组的极大线性无关组的这个数,即这个向量组的行(列)秩。传统的代数中有两种定义矩阵的秩的方法:定义1:一个向量组的极大线性无关组所含向量的个数称为这个向量组的秩.所谓矩阵的行秩就是矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩.矩阵的行秩等于矩阵的列秩,并统称为矩阵的秩。定义2:设.若有一个阶子式不为,且的所有阶子式(假设有阶子式)全为或不存在,则称为的秩,记作,若,则。定义一、定义二,这两个定义是等价的。它的等价性

6、可由向量的线性相关性来证,课本中已有证明。关于矩阵秩的刻画方式很多,下面给出的命题1就是关于矩阵秩的等价描述的一组结论.命题1 设为矩阵,则下面各结论等价:1);2)的行向量组的秩等于;3)的列向量组的秩等于;4)的行空间的维数等于;5)的列空间的维数等于;6)元其次线性方程组的解空间的维数等于。定义3:矩阵经过初等行变换所化成的阶梯型中非零行的个数称为矩阵的秩.矩阵的秩为,记为.特别,零矩阵的秩.该定义不仅便于理解,用该定义计算矩阵的秩也十分方便.只要对矩阵进行初等变换成阶梯型就能直接看出其秩了.实际上定义三就是根据定理“初等变换不改变矩阵的秩”得来的。下

7、面举例以加深理解和比较这三个定义:例1求矩阵的秩其中;解:法一(定义1)有4个3阶子式,,,,.即它的所有3阶子式均为0.我们再随便写几个它的2阶子式,,故的秩为2.法二(定义2)令,,.则.显然中两两不成比例,故秩不可能是1,但可能是2,这还需要验证,令.则带入数据,即有,解得,即有,也就是能被线性表出。故其秩为2.法三(定义3),最终阶梯型矩阵不为0的行数是2,故其秩为2.[1][2][7]2.2矩阵秩的性质:1、2、3、4、5、若的秩为,则存在可逆矩阵、使得.6、,当且仅当是零矩阵;7、,当且仅当;若,则;8、;由上述性质7,我们又可以得到命题2,从而

8、有以下一些等价条件:1)矩阵的秩等于;2)矩阵的行列

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。