数学难点总结.doc

数学难点总结.doc

ID:58578214

大小:36.00 KB

页数:11页

时间:2020-10-19

数学难点总结.doc_第1页
数学难点总结.doc_第2页
数学难点总结.doc_第3页
数学难点总结.doc_第4页
数学难点总结.doc_第5页
资源描述:

《数学难点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、大名鼎鼎的雷西儿,当年中国科大考了总分441.可能以后也会有关于线代和概率的总结。上册除了空间解析几何基本都涉及了,这是数一数二数三数四的共通内容。下册(一)是关于多元微积分和级数的,其中数二数四的就不用看级数了。下册(二)是关于线面积分的,数一专题。上册:函数(高等数学的主要研究对象)极限:数列的极限(特殊)——函数的极限(一般)极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势由极限可以推得的一些性质:局部有界性、局部保号性……应当注意到,由极限所得到的性质通常都是只在局部范围内成立在提出极限概念的时候并未涉及到函数在该

2、点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系连续:函数在某点的极限等于函数在该点的取值连续的本质:自变量无限接近,因变量无限接近导数的概念本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率微分的概念:函数增量的线性主要部分,这个说法有两层意思,一、微分是一个线性近似,二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了不定积分:导数的逆运算什么样的函数有不定积分定积分:由具体例子引出,本质是先分割、再综合,其中分割的

3、作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确什么样的函数有定积分求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆定积分的几何应用和物理应用高等数学里最重要的数学思想方法:微元法微分和导数的应用:判断函数的单调性和凹凸性微分中值定理,可从几何意义去加深理解泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:一、这些多项式的系数如何求?二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确

4、程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的下册(一):多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数最典型的是二元函数极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择

5、的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念沿坐标轴方向的导数若存在,称之为偏导数通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续,则求导次序可交换微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即

6、偏导数存在不一定有微分存在若偏导数存在,且连续,则微分一定存在极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。若通项趋于零,看是否正项级数。若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较

7、的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。若不是正项级数,取绝对值,考虑其是否绝对收敛,绝对收敛则必收敛。若绝对值不收敛,考察一般项,看是否交错级数,用莱布尼兹准则判断。若不是交错级数,只能通过最根本的方法判断,即看其前n项和是否有极限,具体问题具体分析。比较判别法是充分必要条件,比值和根值法只是充分条件,不是必要条件。函数项级数情况复杂,一般只研究幂级数。阿贝尔定理揭示了幂级数的重要性质:收敛区域存在一个收敛半径。所以对幂级数,关键在于求出收敛半径,而这可利用根值判别法解决。逐项求导和逐项积分不改变幂级数除端点外的区域的敛

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。