纳米材料及技术在催化领域的应用.docx

纳米材料及技术在催化领域的应用.docx

ID:59135815

大小:16.30 KB

页数:5页

时间:2020-09-12

纳米材料及技术在催化领域的应用.docx_第1页
纳米材料及技术在催化领域的应用.docx_第2页
纳米材料及技术在催化领域的应用.docx_第3页
纳米材料及技术在催化领域的应用.docx_第4页
纳米材料及技术在催化领域的应用.docx_第5页
资源描述:

《纳米材料及技术在催化领域的应用.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、纳米材料及技术在催化领域的应用催化纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。1 纳米

2、催化剂的制备方法纳米催化剂的制备方法一般有化学法和物理法两类。1.1化学方法1)沉淀法通过化学反应使原料的有效成分沉淀,经过滤、洗涤、干燥、加热分解而得到纳米粒子。包括直接沉淀法、共沉淀法、均匀沉淀法、配位沉淀法等,其共同特点是操作简单方便。2)水解法在高温下先将金属盐的溶液水解,生成水合氧化物或氢氧化物沉淀,再加热分解得到纳米粒子。包括无机水解法、金属醇盐水解法、喷雾水解法等,其中以金属醇盐水解法最为常用,其最大特点是从物质的溶液中直接分离所需要的粒径细、粒度分布窄的超微粉末。该法具有制备工艺简单、化学组成能精确控制、粉体的性能重复性好

3、及得率高等优点,不足之处是原料成本高。3)溶胶—凝胶法利用金属醇盐的水解或聚合反应制备氧化物或金属非氧化物的均匀溶胶,再浓缩成透明凝胶,使各组分分布达到分子水平,凝胶经干燥、热处理即可得到纳米粒子。该法优点是粒径小、纯度高、反应过程易控、均匀度高、烧结温度低,缺点是原料价格高、有机溶剂有毒、处理时间较长等。4)微乳液法利用两种互不相溶的溶剂在表面活性剂的作用下形成均匀的乳液,剂量小的溶剂被包裹在剂量大的溶剂中,形成许多微泡,微泡表面由表面活性剂组成,微泡中的成核、生长、凝结、团聚等过程局限在一个微小的球型液滴内,从而形成球型颗粒。5)电化

4、学沉积法K.B.Kokoh,FHahn等报道,采用循环伏安法,以铂片为工作电极,在包含钌、锇离子的硫酸溶液中制备Pt-Ru,Pt-Os纳米电极。田娟等人通过循环伏安法电沉积使直径约为7nm的Pt纳米粒子均匀地分散于多孔硅表面,拟用作微型质子交换膜燃料电池的催化电极。与刷涂法相比较,电沉积Pt纳米粒子的多孔硅电极(Pt/Si)呈现出高的Pt利用率和增强的电催化活性。1.2 物理法制备纳米催化剂1)惰性气体蒸发法在低压的惰性气体中,加热金属使其蒸发后形成纳米微粒。纳米微粒的粒径分布受真空室内惰性气体的种类,气体分压及蒸发速度的影响,通过改变这

5、些因素,可以控制微粒的粒径大小及其分布。该方法适应范围广,微粉颗粒表面洁净,块体纯度高,相对密度较高;但由于为了防止氧化,制备的整个过程是在惰性气体保护和超高真空室内进行的,设备昂贵,对制备工艺要求较高,故制备难度较大;且加上制备的固体纳米晶体材料中都不可避免地存在杂质和孔隙等缺陷,从而影响了纳米材料的性能,也影响了对纳米材料结构与性能的研究。2)粉末冶金法把纳米粉末经过加压成块、烧结,从而获得块体纳米晶材料。制备过程主要控制压力和烧结工艺参数。由于纳米粉体颗粒尺寸小、表面能高。高的表面能为原子运动提供驱动力,有利于块体材料内部空洞的收缩

6、,故在较低的烧结温度下也能使块体材料致密化。但该法也存在晶粒尺寸容易长大、尺寸分布不均匀、微孔隙、致密度较低等问题。2 纳米材料在催化领域的应用纳米催化剂具有表面效应,吸附特性及表面反应等特性,因此纳米催化剂在催化领域的应用十分广泛。实际上,国际上已把纳米粒子催化剂称为第四代催化剂。我国目前在纳米材料的研究应用水平在某些方面处于世界领先地位,已实现产业化的SiO2、CaCO3、TiO2、ZnO等少数几个品种,这些制备出来的纳米材料在催化领域中主要用于两个方面:一是直接用作主催化剂,二是作为纳米催化剂载体制成负载型催化剂使用。2.1石油化工

7、催化领域由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。利用纳米微粒的高比表面积和高活性这些特性,可以显著提高催化效率。例如,纳米Ni粉可将有机化学加氢和脱氢反应速度提高15倍;超细Pt粉、碳化钨粉是高效的加氢催化剂;在甲醛氧化制甲醇反应中,使用纳米SiO2,选择性可提高5倍,利用纳米Pt催化剂,放在TiO2担体上,通过光照,使甲醇水溶液制氢产率提高几十倍。

8、在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。纳米稀土氧化物,如La2O3、CeO2、Sm2O3、Pr6O11等,可作为二氧化碳选择性氧化乙烷制

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。