不重复的路-一笔画问题.ppt

(19页)

'不重复的路-一笔画问题.ppt'

《不重复的路-一笔画问题.ppt》由会员分享,提供在线免费全文阅读可下载,此文档格式为ppt,更多相关《不重复的路-一笔画问题.ppt》文档请在天天文库搜索。

1、保持笔尖不离开纸,描出图中每一条线,且每条线只能描一次 。描一描一笔画问题不走回头路“乡村少年宫” 兴趣数学班第六讲从图形上某一点出发,连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。连续不断又不重复一笔画 为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点? 研究一笔画问题,先要了解图形的特点。下面的图形能一笔画成吗? 任何图形都是由点、线组成.图形中的点可以分为偶点和奇点两大类。 从一个点出发的线的数量是偶数的叫偶点。AA是偶点。 从一个点出发的线的数量是奇数的叫奇点。B是奇点。B下面哪些是奇点,哪些是偶点?1.奇点2.偶点3.偶点4. 奇点5.偶点偶奇奇偶偶活动:  以同桌为单位,讨论下列图形的单数点、双数点的个数,试试能不能一笔画成,完成表格。图 形单数点个数双数点个数040321是否是一笔画√√√起点、终点A、B、C、DA、B、C以B、D为起点或终点。

2、22√以A、D为起点、终点24√以F、C为起点、终点4045×× 下图能一笔画出来吗?如果能该怎么画? 图中共有4个交点,其中2个偶点,2个奇点。 能一笔画成。从一个奇点出发,到另一个奇点结束。 下图能一笔画出来吗?如果能该怎么画? 图中12个交点都是偶点。 能一笔画成。从任一个偶点出发,还到这个偶点结束。起点起点终点终点 一个连通的图形,我们要根据图形中奇点的个数来判断能否一笔画成: (3)奇点为1个或超过两个的图形就不能一笔画成。 (2)凡只有两个奇点的图形,一定可以一笔画成。画时要以一个奇点为起点,另一个奇点为终点。 (1)凡没有奇点,只有偶点的图形,一定可以一笔画成。画时可从任意偶点起笔,最后仍回到这点。不连通偶点偶点偶点偶点偶点奇点偶点奇点偶点奇点偶点奇点偶点偶点偶点偶点偶点偶点偶点奇点奇点判断下列图形能否一笔画成,再试着画一画。 故事发生在18世纪的哥尼斯堡城.流经那里的一条河。

3、中有两个小岛,还有七座桥把这两个小岛与河岸联系起来,那里风景优美,游人众多.在这美丽的地方,人们议论着一个有趣的问题:一个游人怎样才能不重复地一次走遍七座桥,最后又回到出发点呢? “七桥问题”“七桥问题”能不能既不重复又不遗漏地一次相继走遍这七座桥?②①③④⑤⑥⑦试一试能不能既不重复又不遗漏地一次相继走遍这七座桥?  欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了. 直到1836年,瑞士著名的数学家欧拉才证明了这个问题的不可能性。欧拉把河的两岸、两个小岛看成四个点把七座桥看成是七条线转化成数学模型后如图所示建立数学模型ACDB一只红蚂蚁和一只黄蚂蚁比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?蚂蚁赛跑分析:图中只有两个奇点,可以一笔画。即可以不重复的走遍每一条棱线。但是只有从奇点出发才能一笔画,所以红蚂蚁选对了出发点哦!红蚂蚁获胜!。

关 键 词:
重复 笔画 问题
 天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:不重复的路-一笔画问题.ppt
链接地址: https://www.wenku365.com/s-59834129.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给天天文库发消息,QQ:1290478887 - 联系我们

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有【成交的100%(原创)】。本站是网络服务平台方,若您的权利被侵害,侵权客服QQ:1290478887 欢迎举报。

1290478887@qq.com 2017-2027 https://www.wenku365.com 网站版权所有

粤ICP备19057495号 

收起
展开