complex analysis - cain

complex analysis - cain

ID:14306963

大小:1.46 MB

页数:101页

时间:2018-07-27

complex analysis - cain_第1页
complex analysis - cain_第2页
complex analysis - cain_第3页
complex analysis - cain_第4页
complex analysis - cain_第5页
资源描述:

《complex analysis - cain》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ComplexAnalysisGeorgeCain(c)Copyright1999byGeorgeCain.Allrightsreserved.TableofContentsChapterOne-ComplexNumbers1.1Introduction1.2Geometry1.3PolarcoordinatesChapterTwo-ComplexFunctions2.1Functionsofarealvariable2.2Functionsofacomplexvariable2.3DerivativesChapterThree-Elem

2、entaryFunctions3.1Introduction3.2Theexponentialfunction3.3Trigonometricfunctions3.4LogarithmsandcomplexexponentsChapterFour-Integration4.1Introduction4.2Evaluatingintegrals4.3AntiderivativesChapterFive-Cauchy'sTheorem5.1Homotopy5.2Cauchy'sTheoremChapterSix-MoreIntegration

3、6.1Cauchy'sIntegralFormula6.2Functionsdefinedbyintegrals6.3Liouville'sTheorem6.4MaximummoduliChapterSeven-HarmonicFunctions7.1TheLaplaceequation7.2Harmonicfunctions7.3Poisson'sintegralformulaChapterEight-Series8.1Sequences8.2Series8.3Powerseries8.4Integrationofpowerseries

4、8.5DifferentiationofpowerseriesChapterNine-TaylorandLaurentSeries9.1Taylorseries9.2LaurentseriesChapterTen-Poles,Residues,andAllThat10.1Residues10.2PolesandothersingularitiesChapterEleven-ArgumentPrinciple11.1Argumentprinciple11.2Rouche'sTheorem---------------------------

5、-------------------------------------------------GeorgeCainSchoolofMathematicsGeorgiaInstituteofTechnologyAtlanta,Georgia0332-0160cain@math.gatech.eduChapterOneComplexNumbers1.1Introduction.Letusharkbacktothefirstgradewhentheonlynumbersyouknewweretheordinaryeverydayintege

6、rs.Youhadnotroublesolvingproblemsinwhichyouwere,forinstance,askedtofindanumberxsuchthat3x6.Youwerequicktoanswer”2”.Then,inthesecondgrade,MissHoltaskedyoutofindanumberxsuchthat3x8.Youwerestumped—therewasnosuch”number”!YouperhapsexplainedtoMissHoltthat326and339,ands

7、ince8isbetween6and9,youwouldsomehowneedanumberbetween2and3,butthereisn’tanysuchnumber.Thuswereyouintroducedto”fractions.”Thesefractions,orrationalnumbers,weredefinedbyMissHolttobeorderedpairsofintegers—thus,forinstance,8,3isarationalnumber.Tworationalnumbersn,mandp,q

8、weredefinedtobeequalwhenevernqpm.(Moreprecisely,inotherwords,arationalnumberisanequivalencecla

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。