cpld在dsp系统中的应用设计

cpld在dsp系统中的应用设计

ID:15392960

大小:171.50 KB

页数:4页

时间:2018-08-03

cpld在dsp系统中的应用设计_第1页
cpld在dsp系统中的应用设计_第2页
cpld在dsp系统中的应用设计_第3页
cpld在dsp系统中的应用设计_第4页
资源描述:

《cpld在dsp系统中的应用设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、CPLD在DSP系统中的应用设计摘要:以Altera公司MAX700旧系列为代表,介绍了CPLD在DSP系统中的应用实例。该方案具有一定的普遍适用性。  关键词:RESETBOOTHPICPLD的延时时序DSP的速度较快,要求译码的速度也必须较快。利用小规模逻辑器件译码的方式已不能满足DSP系统的要求。同时,DSP系统中经常需要外部快速部件的配合,这些部件往往是专门的电路,可由可编程器件实现。CPLD的时序严格、速度较快、可编程性好,非常适合于实现译码和专门电路。本文以MAX7000系列为例,具体介绍其在以TI公司的TMS320C6202为平台的网络摄像机系统中的应用。1CPLD在DSP系统

2、中的功能介绍1.1DSP系统简介本文所论述的编码器系统是基于DSP的MPEG-4压缩编码器的,主要由前端视频采集、数据预处理以及MPEG-4视频压缩编码三部分组成。基于DSP的MPEG-4编解码器由于其所选用的DSP运算能力强、编程灵活,且实现不同的图像编码算法时只需对DSP内部的程序进行改写便可实现诸如MPEG、H.263等多种图像编码,因而具有良好的应用情景。CPLD芯片对整个编码器起着逻辑控制作用,系统结构如图1所示。1.2CPLD在系统中的功能要求1.2.1产生复位信号系统上电时,CPLD产生复位信号,使整个系统中的FPGA和DSP模块复位,进入初始状态;系统上电后,数据采集模块自动

3、启动。系统内共使用三种电源:5V、3.3V、1.8V。其中,5V电源由供电电源接人,3.3V、1.8V电源由TPS56300(TI产品)提供。采用TPS3307(TI产品)为系统提供电源管理,该芯片可同时管理三种电源。当监测到电源电压低于一定值时,产生复位信号。TPS3307在其自身电源电压大于1V的情况下即可以输出复位信号。当系统出现错误时,可以采用手工方式复位。复位信号产生原理图如图2所示。其中,RST#为整个系统的复位信号,由MAX7000输出。PBSW_RST#为手动复位信号,由按键接人MAX7000,经MAX7000去抖动后输出给TPS3307。SVS_RST#为电源管理芯片TP

4、S3307产生的复位信号(包括手动复位和电源监控功能)。1.2.2BOOT模式的实现系统复位后,DSP需要进行BOOT自举。在复位信号为低期间,BOOTMODE[4:0]管脚上的设置值被锁存,决定芯片的存储器映射方式以及自举模式。但TMS320C6202没有专门的管脚作为BOOTMODE[4:0]输入管脚,而是将扩展总线的XD[4:0]映射为BOOTMODE[4:0],利用上拉/下拉电阻在复位时进行芯片启动模式设置。总线上的其它位也在复位期间被锁定,决定系统相应的设定值。而扩展总线XD在HPI口读写时要用到,所以使用MAX7000进行隔离。系统处在复位阶段,则通过MAX7000使得DSP的相

5、应管脚的值等于设定值,复位结束后,MAX7000相应管脚为高阻态,使得XD可以作为正常的总线使用。DSP自举有特定的时间要求。在复位结束后,XD的配置管脚必须保持一段时间,TMS320C6202要求时间为5个时钟周期,例如在200MHz时钟情况下必须保持25ns。1.2.3HPI口接口逻辑实现MPEG-4压缩编码器压缩后的数据,通过网络传输控制模块传输到网络上去,从而实现网络实时图像传输。而DSP与网络传输模块(MCF5272)通过HPI口连接。其接口逻辑由CPLD完成。硬件连线图如图3所示。根据系统的逻辑要求以及实际的仿真结果,CPLD选用EPM7128SLC84。该芯片共有2500门,1

6、28个宏单元,最多100个用户自定义管脚。2CPLD逻辑控制的具体实现2.1复位信号的实现复位信号逻辑产生较简单,需要处理的是按键的去抖动。由于按键是机械触点,当机械触点断开、闭合时会有抖动,为使每一次按键只作一次响应,就必须考虑去除抖动。在通过按键获得复位信号为低的信息时,不是立即认定按键已被按下,而是延时一段时间后再次检测复位信号。如果仍为低,说明按键的确按下了,这实际上是避开了按键按下时的抖动时间。同样,在检测到按键释放后,再延时几个毫秒,消除后沿的抖动,然后再对键值处理。由于抖动现象主要出现在按键按下后,采用延时方法可有效地减少按键的抖动现象。2.2BOOT模式的实现为了满足在复位有

7、效期间对相应管脚进行配置,在复位无效时,使管脚进入高阻态。以其中一个管脚为例,采用Verilog语言,用如下语句实现该功能:assignhd0=(tp4)?rst_hd0:1′bz;//复位有效期间,tp4为1,hd=rst_hdo,即为设定值;复位无效时,tp4=0,hd为高阻态。   因为DSP自举有特定的时间要求,在复位信号结束后,配置管脚的值必须至少保持25ns。通过对复位信号作一定的延时,可以满足要

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。