电芯直流内阻与二阶rc等效电路

电芯直流内阻与二阶rc等效电路

ID:35754242

大小:509.48 KB

页数:9页

时间:2019-04-16

电芯直流内阻与二阶rc等效电路_第1页
电芯直流内阻与二阶rc等效电路_第2页
电芯直流内阻与二阶rc等效电路_第3页
电芯直流内阻与二阶rc等效电路_第4页
电芯直流内阻与二阶rc等效电路_第5页
资源描述:

《电芯直流内阻与二阶rc等效电路》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、上一篇梳理了几种典型的等效电路模型,本篇尝试着对二阶RC等效电路模型进行参数辨识。一般来说HPPC测试数据是主要的输入文件,在之前写的《实现电池管理所必要的电池测试数据有哪些》也有提到。文中特别指出普通的测试方法(即FreedomCAR的标准测试方法)所提供的数据对于进行等效电路模型参数辨识而言是不够充分的。普通测试方法指定的脉冲测试SOC点是从90%开始至10%结束,中间间隔10%,共9个点;而对于电池而言0%~10%和90%~100%恰巧就是极化最为显著的区间,一旦缺失了该部分的数据模型精度将受

2、到比较大的影响。因此我将HPPC测试增加了8个测试点:0%、2.5%、5%、7.5%、92.5%、95%、97.5%、100%。测试全程的数据如下图:·数据分解有了上面的整体测试数据,接下来需要针对每一个SOC点上的脉冲功率测试曲线进行分析。①10S放电脉冲(U1-U4区间):当电池受到了10秒的放电脉冲,由于极化现象的产生电池电压会迅速从U1下降至U2,并且可以认为这部分压降主要是欧姆极化的作用。U2至U3部分可以认为是在持续放电期间电化学极化和浓差极化共同产生的压降。当放电电流消失,电池电压从U

3、3迅速回弹至U4,同样可以认为是由于欧姆极化的消失。②40S搁置(U4-U5区间):这一区间可以被认为是零输入响应,可以通过这一段曲线拟合二阶RC参数,稍后具体展开。③10S充电脉冲(U5-U8区间):与放电同理。根据计算会发现电池在同一SOC状态下,放电方向和充电方向的欧姆内阻和RC参数是有一定差异的,从提高模型精度的角度看可以分别求出充放电方向的参数,再在应用时根据实际电流情况进行参数切换。④40S搁置(U8-U9区间):与放电同理。·二阶RC等效电路模型参数辨识1.直流内阻R0放电方向的直流内

4、阻既可以是:也可以是:考虑到测试存在误差,可以取两者的均值。充电方向的直流内阻计算也是同理。根据计算得到如下充放电方向上的四条DICR曲线,总得来看全程放电方向DCIR大于充电方向。2.Up1&Up2以及RC时间常数U4-U5区间40秒的搁置,可以用零输入响应的公式进行拟合:通过MATLABCurveFittingTool很快就得以得到Uoc、U0p1、U0p2、时间常数1和时间常数2。为了比较一下一阶RC和二阶RC拟合出来的效果,我用一阶RC也拟合了一下,如下图: 对电池测试得出的OCV与拟合得出

5、的OCV进行比较如下图: 3.R1、C1和R2、C2根据U3时刻C1和C2上的电流和电压即可求出R1和R2,再通过时间常数求出C1和C2。最后就可以得到在不同SOC状态下的参数表。但这仅仅是电池在BOL@25℃时刻的状态,电池随着温度的变化、寿命的老化内部参数必然会发生显著的变化,因此在实车应用上该如何解决这些问题是值得更深入讨论的地方。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。