其它显微分析方法1

其它显微分析方法1

ID:39302624

大小:1.83 MB

页数:69页

时间:2019-06-30

其它显微分析方法1_第1页
其它显微分析方法1_第2页
其它显微分析方法1_第3页
其它显微分析方法1_第4页
其它显微分析方法1_第5页
资源描述:

《其它显微分析方法1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十三章 其它显微分析方法一、离子探针(IMA)一、离子探针(IMA)离子探针仅利用电子光学方法,把惰性气体等初级离子加速并聚集成细小的高能离子束轰击样品表面,激发和溅射二次离子,经过加速和质谱分析,分析表面成分。分析区域:1~2μm直径;<5nm的深度,离子探针在分析深度、采样质量、检测灵敏度、可分析元素范围和分析时间等方面,均优于电子探针。几种表面微区成分分析技术的性能比较离子探针结构示意图双等离子流发生器将轰击气体电离,以12~20KV加速电压引出,通过扇形磁铁偏转后进入电磁透镜聚焦成细小的初级粒子束。二次离子的能量非单一性,质谱分析采用双聚焦系统有1KV左右加速电压从表面引出二次离子首

2、先进入圆筒形电容器式静电分析器,由于离子的偏转轨迹半径(r=mw2/eE)正比于粒子的动能,扇形磁铁内的均匀磁场把离子按e/m比进行分类,即可分辨出不同元素的离子磁场内离子轨迹半径:质谱分析的背景强度几乎为零,所以检测灵敏度极高。可检测质量极限为10-19克数量级,仅相当几百个原子的存在量。在可控的条件下,利用初级离子轰击溅射剥层,可以分析元素浓度随深度变化规律。当初级离子束在样品表面扫描时,选择某离子讯号强度调制同步扫描阴极射线管荧光屏亮度,可显示元素面分布的图像。二、低能电子衍射(LEED)二、低能电子衍射(LEED)低能电子衍射是利用10~500eV能量的电子入射,通过弹性背散射电子波的

3、相互干涉产生衍射花样。由于样品物质与电子的强烈相互作用,常常是参与衍射的样品体积只是表面一个原子层,对于那些能量较高的电子(>100eV),也仅限于2~3层电子。是一种二维结构参与衍射,不足以构成真正的三维结构衍射,低能衍射这一重要特点使之成为固体表面结构分析的极为有效的工具。1.二维点阵的衍射Φ′aφb一维衍射条件:二维衍射条件:低能电子衍射,入射波长λ=0.05~0.5nm倒易杆与参考球相交两个点A和A′K′sinφ=g因k′=1/λ,g=1/d,二维点阵衍射的布拉格方程为:dsinφ=λ二维点阵衍射的爱瓦尔德作图法如果表面不干净有吸附原子,呈规则排列会出现超点阵2.衍射花样的观察和记录试

4、样处于半球形接收极的中心,接收极处有3~4个半球形的网状栅极。入射束直径0.4~1nm,发散角1°G1与样品同电位,形成无电场空间。使能量很低的入射和衍射电子部发生畸变。半圆球接收极上涂有荧光粉(并接5V的正电位),可见低能电子衍射花样。3.低能电子衍射的应用晶体的表面原子排列。表面存在某种程度的长程有序结构,可以进行鉴别。气相沉积表面膜的生长。研究表面膜生长过程,分析表面与基底结构、缺陷和杂质的关系。氧化膜的形成。利用低能电子衍射研究表面氧化过程,从氧原子吸附开始,通过氧与表面的反应,最终生成三维氧化物。气体吸附和催化。气体吸附是低能电子衍射最主要的应用领域。也用于研究化学吸附现象和催化过程

5、。低能电子衍射的应用使我们知道“表面发生什么变化”,三、俄歇电子能谱仪(AES)三、俄歇电子能谱仪(AES)检测俄歇电子的能量和强度,可分析表层化学成分,定性分析和定量分析。1.俄歇跃迁及其几率原子发射一个KL2L2俄歇电子,其能量为:俄歇跃迁涉及三个核外电子:一般情况:由于A层电子电离,使A层出现空位,高能级B层电子向A层空位跃迁,多余的能量激发C层电子的发射。考虑到A电子的电离将引起原子库仑电场的改组,使C层能级略有改变,可以看成原子处于失去一个电子的正离子状态,于是俄歇电子的特征能量应为:EABC(Z)=EA(Z)-EB(Z)-EC(Z+Δ)-EW俄歇电子的产额俄歇电子的产或俄歇跃迁几率

6、决定俄歇谱峰的强度,直接关系到元素的定量分析。当激发过程中荧光X射线与俄歇电子的相对发射几率,即荧光产额(ωK)和俄歇电子产额(αK)满足:αK=1-ωK最常见的俄歇电子能量,总时相应于最有可能发生的跃迁过程,也是给出最强X射线谱的电子跃迁过程。图中给出了每种元素所产生的(各系)俄歇电子能量和强度由于能级结构强烈依赖于原子序数,可用确定能级的俄歇电子来鉴别元素。各种元素在不同跃迁过程中激发的俄歇电子能量俄歇电子平均产额随原子序数的变化Z≤14的轻元素采用KLL俄歇电子分析14<Z<42的元素,采用LMM俄歇电子分析较合适。Z≥42的的元素,采用MNN和MNO俄歇电子分析较好俄歇电子的空间分辨率

7、大多数元素在50~1000eV能量范围内都由产额较高的俄歇电子,它们的有效激发体积(空间分辨率)取决于入射电子束斑直径和俄歇电子的发射深度。能保持特征能量(没有能量损失)而逸出表面的俄歇电子的发射深度仅限于表面以下大约2nm以内。相当于表面几个原子层。发射深度约歇电子的能量以及样品材料有关,在这样浅的表面内逸出俄歇电子时,入射电子束的侧向扩展几乎未开始,所以其空间分辨率直接由入射电子束的直径决定。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。