欢迎来到天天文库
浏览记录
ID:51092158
大小:327.51 KB
页数:24页
时间:2020-03-18
《平行线的性质 习题 (含答案).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,AC∥BE,∠ABE=70°,则∠A的度数为( )A.70∘B.65∘C.50∘D.140∘【答案】A【解析】【分析】根据平行线的性质进行判断即可,两直线平行,内错角相等.【详解】解:∵AC∥BE,∴∠A=∠ABE=70°,故选:A.【点睛】本题主要考查了平行的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.2.如图在ΔABC中,已知∠1+
2、∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°【答案】B【解析】【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.试卷第23页,总24页【详解】∵∠1+∠EFD=180°,∠1+∠2=180°,∴∠EFD=∠2,∴AB∥EF∴∠ADE=∠3,∵∠3=∠B,
3、∴∠ADE=∠B,∴DE∥BC,∴∠AED=∠C,∵∠AED=58°,∴∠C=58°,故选B.【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.3.如图,已知直线c与a、b分别交于点A、B,且∠1=120°,当∠2=( )时,直线a∥b.A.60∘B.120∘C.30∘D.150∘【答案】B【解析】【分析】先根据对顶角相等求出∠3的度数,再由平行线的判定即可得出结论.【详解】解:∵∠1=120°,∠1与∠3是对顶角,试卷第23页,总24页∴∠1=∠3=120°,∵∠2=∠3=120
4、°,∴直线a∥b,故选B.【点睛】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.4.如图a∥b,∠1与∠2互余,∠3=115°,则∠4等于()A.115°B.155°C.135°D.125°【答案】B【解析】【分析】根据两直线平行同旁内角互补以及互余互补的定义可计算出∠4的值.【详解】如图,∵∠3与∠5是对顶角,∴∠5=∠3=115°,∵a∥b,∴∠2+∠4=180°,∠1+∠5=180°,∴∠1=180°-115°=65°,又∵∠1与∠2互余,∴∠2=90°-∠1=25°,∴∠4=180°-
5、∠2=180°-25°=155°,故选B.试卷第23页,总24页【点睛】本题考查了平行线的性质以及余角和补角的知识,熟练掌握相关性质是解题的关键.5.如图,给出如下推理:①∠1=∠3.∴AD∥BC;②∠A+∠1+∠2=180°,∴AB∥CD;③∠A+∠3+∠4=180°,∴AB∥CD;④∠2=∠4,∴AD∥BC其中正确的推理有( )A.①②B.③④C.①③D.②④【答案】D【解析】【分析】根据平行线的性质与判定解答即可.【详解】∠1=∠3即内错角相等.∴CD//BA故①错误;∠A+∠1+∠2=180°即同旁内角
6、互补.∴AB//CD故②正确;∠A+∠3+∠4=180°,即同旁内角互补∴AD//CB,故③错误;∠2=∠4,即内错角相等∴AD//BC故④正确,即②④正确,故选D.【点睛】此题主要考察平行线的性质与判定,正确理解条件与结论之间的关系是解题的关键.6.如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()A.75°B.80°C.85°D.95°【答案】C【解析】【分析】试卷第23页,总24页过点E作EF∥CD,根据AB∥CD可得EF∥AB,利用两直线平行,同旁内角互补和内错角相等,分别求出∠BEF和∠
7、FEC的度数,二者相加即可.【详解】过点E作EF∥CD,如图所示:∵AB∥CD,∴EF∥AB,∵∠ABE=120°,∴∠BEF=60°,∵EF∥CD,∠ECD=25°,∴∠FEC=∠ECD=25°,∴∠E=∠BEF+∠ECD=60°+25°=85°.故选:C.【点睛】考查了平行线性质,解答此题的关键是利用两直线平行,分别求出∠BEF和∠FEC的度数.7.如图,l1∥l2,∠1=50°,则∠2等于()A.135°B.130°C.50°D.40°【答案】B【解析】【分析】两直线平行,同旁内角互补,据此进行解答.【详解
8、】∵l1∥l2,∠1=50°,∴∠2=180°-∠1=180°-50°=130°,故选B.【点睛】试卷第23页,总24页本题应用的知识点为:两直线平行,同旁内角互补.8.如图,将三角形ABC沿AB方向平移后,到达三角形BDE的位置.若∠CAB=50°,∠ABC=100°,则∠1的度数为()A.30°B.40°C.50°D.60°【答案】A【解析】【分析】根据平移的性质得出
此文档下载收益归作者所有