浅谈天文学之射电天文学

浅谈天文学之射电天文学

ID:527460

大小:29.50 KB

页数:7页

时间:2017-08-22

浅谈天文学之射电天文学_第1页
浅谈天文学之射电天文学_第2页
浅谈天文学之射电天文学_第3页
浅谈天文学之射电天文学_第4页
浅谈天文学之射电天文学_第5页
资源描述:

《浅谈天文学之射电天文学》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、浅谈天文学之射电天文学浅谈天文学之射电天文学浅谈天文学之射电天文学浅谈天文学之射电天文学浅谈天文学之射电天文学摘要:天文学是自然科学六大基础学科之一,它推动了人类社会的进步和科技的发展。天文学对于提高民族素质、培养创新精神及科学的思维方法,建立正确的世界观、宇宙观方面有着不可替代的作用。普及天文知识,对破除迷信、反对伪科学也具有重要的科学意义。发达国家及一些发展中国家的大学、中学都普遍开设了天文学课程。现在,我们学校也同样开设了天文学选修课,这为我们这些从小就对天文产生好奇、现在对天文依然抱有兴趣的人开了一扇圆

2、梦的窗口。关键字:天文星系射电望远镜引言:自小就对天文方面颇感兴趣,但一直都没机会深入了解这方面的内容,课本上对天文方面的知识都是浅谈辄止,而我们也就只有通过看看课外书籍或者新闻来了解那神秘的未知世界。2005年“神舟六号”载人航天飞船的成功升天与着陆,让我们看到了以前遥不可及的星际并不是梦想。嫦娥奔月一直只是作为一个神话故事,而浩瀚的宇宙亦是那么的遥不可及,而今飞天梦想的实现,宇宙以不再是秘密!一:天文学的性质当您抬头仰望天空时,您知道那些闪闪发光的东西是什么吗?一些是行星,但多数为恒星,还有一些是巨大的星系

3、,每个星系中都有成百上千亿颗恒星。天文学就是研究宇宙中的行星、恒星以及星系的科学。天文学家的任务就是解释我们在夜空中所看到的各种天体,他们还致力于了解其他一些东西,例如,恒星的年龄以及他们与地球之间的距离等等。内容包括天体的构造、性质和运行规律等。主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。按观测手段分类已形成光学天文学、射电天文学和空间天文学

4、几个分支学科。同时天文学是简洁,优美的,令人陶醉的!不少人认为天文学离现实生活很远,其实这也对,但说的不够严谨!天文学不仅是一门自然科学,而且还是一门自然哲学,吸引无数人研究!总的来说,天文学是一门古老而又年轻的科学!天文学的发展历程象征着人类文明的成果与辉煌!二:射电天文学的概述射电天文学是通过观测天体的无线电波来研究天文现象的一门学科。由于地球大气的阻拦,从天体来的无线电波只有波长约1毫米到30米左右的才能到达地面,绝大部分的射电天文研究都是在这个波段内进行的。射电天文学以无线电接收技术为观测手段,观测的对

5、象遍及所有天体:从近处的太阳系天体到银河系中的各种对象,直到极其遥远的银河系以外的目标。射电天文波段的无线电技术,到二十世纪四十年代才真正开始发展。对于历史悠久的天文学而言,射电天文使用的是一种崭新的手段,为天文学开拓了新的园地。三:射电天文学的起源1860年,苏格兰物理学家麦克斯韦提出一个理论,预言整个辐射家族都与电磁现象(即电磁辐射)有联系,而一般可见光只是这个家族中的一小部分而已。25年以后,即在麦克斯韦因患癌症过早去世7年后,才找到了证实他的预言的第一个确实的证据。1887年,德国物理学家H.R.赫兹从

6、感应线圈的火花中制造振荡电流,结果产生出波长极长的辐射,比一般红外辐射的波长长得多。H.R.赫兹探测到了这些辐射。这些辐射后来称做无线电波或射电波。波长可以用微米(1/1000000米)来量度;可见光的波长从0.39微米(极紫)到0.78微米(极红)。接下去是近红外辐射(0.78~3微米),再就是中红外辐射(3~30微米),然后是远红外辐射(30~1000微米)。从此开始便是射电波:所谓的微波从1000~160000微米,长波射电波长高达几十亿微米。辐射的特性不仅可以用波长来表示,也可以用频率来表示。频率就是每

7、秒钟产生的辐射的波数。可见光和红外辐射频率的数值太大,因此在这两种情况下通常不使用频率来表示。但是,对射电波来说,频率降低到比较低的数字,因而得到广泛地应用、每秒钟1000个波叫做1千周;每秒钟1000000个波叫做1兆周。微波的范围从300000兆周到1000兆周。一般电台使用的射电波波长都很长,都低到千周的范围。在赫兹发现射电波后的10年期间,光谱的另一端也有了同样的扩展。1895年,德国物理学家伦琴意外地发现了一种神秘的辐射,他称之为X射线,结果证明,X射线的波长比紫外辐射的波长短。后来卢瑟福证明,与放射

8、性有关的γ射线的波长比X射线的还要短。于是,牛顿最初的光谱得到极大的扩展。如果我们把波长每增加一倍看作是相当于1个8度音程的话(如同声音那样),那么我们所研究的全部电磁波谱大约等于60个8度音程:可见光在靠近光谱的中心部分,仅占1个8度音程的范围。有了比较宽的光谱,我们对恒星的认识当然会更加全面。例如,我们知道,太阳光中包含着大量紫外辐射和红外辐射,这些辐射大部分被我们的大气吸收了;但

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。