matlab瑞利衰落信道仿真.doc

matlab瑞利衰落信道仿真.doc

ID:57207539

大小:131.50 KB

页数:7页

时间:2020-08-06

matlab瑞利衰落信道仿真.doc_第1页
matlab瑞利衰落信道仿真.doc_第2页
matlab瑞利衰落信道仿真.doc_第3页
matlab瑞利衰落信道仿真.doc_第4页
matlab瑞利衰落信道仿真.doc_第5页
资源描述:

《matlab瑞利衰落信道仿真.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、瑞利分布信道MATLAB仿真1、引言由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。2、仿真原理(1)瑞利分布分析环境条件:通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路

2、径(如视距传播路径),且存在大量反射波,到达接收天线的方向角随机的((0~2π)均匀分布),各反射波的幅度和相位都统计独立。幅度与相位的分布特性:包络r服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分布的概率分布密度如图1所示:图1瑞利分布的概率分布密度(2)多径衰落信道基本模型离散多径衰落信道模型为(1)其中,复路径衰落,服从瑞利分布;是多径时延。多径衰落信道模型框图如图2所示:图2多径衰落信道模型框图(3)产生服从瑞利分布的路径衰落r(t)利用窄带高斯过程的特性,其振幅服从瑞利分布,即(2)上式中,分别

3、为窄带高斯过程的同相和正交支路的基带信号。3、仿真框架根据多径衰落信道模型(见图2),利用瑞利分布的路径衰落r(t)和多径延时参数,我们可以得到多径信道的仿真框图,如图3所示;图3多径信道的仿真框图4、仿真结果(1)(1)多普勒滤波器的频响图4多普勒滤波器的频响(2)多普勒滤波器的统计特性图5多普勒滤波器的统计特性(3)信道的时域输入/输出波形图6信道的时域输入/输出波形5、仿真结果(2)(1)当终端移动速度为30km/h时,瑞利分布的包络如下图所示(2)当终端移动速度为100km/h时,瑞利分布的包络如下

4、图所示三、仿真代码%main.mclc;LengthOfSignal=10240;%信号长度(最好大于两倍fc)fm=512;%最大多普勒频移fc=5120;%载波频率t=1:LengthOfSignal;%SignalInput=sin(t/100);SignalInput=sin(t/100)+cos(t/65);%信号输入delay=[03171109173251];power=[0-1-9-10-15-20];%dBy_in=[zeros(1,delay(6))SignalInput];%为时移补零

5、y_out=zeros(1,LengthOfSignal);%用于信号输出fori=1:6Rayl;y_out=y_out+r.*y_in(delay(6)+1-delay(i):delay(6)+LengthOfSignal-delay(i))*10^(power(i)/20);end;figure(1);subplot(2,1,1);plot(SignalInput(delay(6)+1:LengthOfSignal));%去除时延造成的空白信号title('SignalInput');subplot(

6、2,1,2);plot(y_out(delay(6)+1:LengthOfSignal));%去除时延造成的空白信号title('SignalOutput');figure(2);subplot(2,1,1);hist(r,256);title('AmplitudeDistributionOfRayleighSignal')subplot(2,1,2);hist(angle(r0));title('AngleDistributionOfRayleighSignal');figure(3);plot(Sf1)

7、;title('TheFrequencyResponseofDopplerFilter');%Rayl.mf=1:2*fm-1;%通频带长度y=0.5./((1-((f-fm)/fm).^2).^(1/2))/pi;%多普勒功率谱(基带)Sf=zeros(1,LengthOfSignal);Sf1=y;%多普勒滤波器的频响Sf(fc-fm+1:fc+fm-1)=y;%(把基带映射到载波频率)x1=randn(1,LengthOfSignal);x2=randn(1,LengthOfSignal);nc=if

8、ft(fft(x1+i*x2).*sqrt(Sf));%同相分量x3=randn(1,LengthOfSignal);x4=randn(1,LengthOfSignal);ns=ifft(fft(x3+i*x4).*sqrt(Sf));%正交分量r0=(real(nc)+j*real(ns));%瑞利信号r=abs(r0);%瑞利信号幅值

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。