E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I

E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I

ID:81816626

大小:3.76 MB

页数:7页

时间:2023-07-21

上传者:U-14522
E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I_第1页
E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I_第2页
E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I_第3页
E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I_第4页
E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I_第5页
E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I_第6页
E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I_第7页
资源描述:

《E ffi cient Negative Photochromism by the Photoinduced Migration of Photochromic MerocyanineSpiropyran in the Solid State - Yamaguchi, I》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/LangmuirArticleEfficientNegativePhotochromismbythePhotoinducedMigrationofPhotochromicMerocyanine/SpiropyranintheSolidStateTetsuoYamaguchi,KamonnartJaaImwiset,andMakotoOgawa*CiteThis:Langmuir2021,37,3702−3708ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Efficientnegativephotochromismwasachievedbythephoto-inducedmigrationofmerocyanineinmesoporoussilicatoanorganophilicclayasspiropyran.Dependingonthenatureoftheorganophilicclays(dioctadecyldime-thylammoniumanddioleyldimethylammoniumclays),importantdifferencesinthenegativephotochromismsandthethermalcolorationwereobserved;thedioleyldimethylammoniumclaygaveahigheryield(98%)andfasterreaction(half-lifet1/2=2.8h)thanthedioctadecyldimethylammoniumclay(94%andt1/2=3.2h)ofthenegativephotochromism,indicatingtheimportantroleofthesurfactantassemblytocontrolthemoleculardiffusion.■INTRODUCTIONPhotochromism,whichisaphenomenonofphotoinducedcolorationandthermaldecolorationattributabletomolecularisomerization,hasbeenpaidattentionforapplicationssuchas1−4opticalswitchingunitsforopticalmemory,photochromic5−78−1011−14lens,sensing,andenergystoragematerials.UVlighthasbeenusedtotriggerphotochromicreactions,neverthelessofitshigherenergythanvisiblelightandunfavorablephenomenasuchassidereactionanddecom-15−17positionofthephotochromiccompounds.Accordingly,designingphotochromicreactionsbyvisiblelightirradiationwithhighconversionefficiencyandcontrolledthermalbackwardreactionisakeyforthepracticalapplicationof18−20photochromism.Photochromicreactionsinthesolid-stateareotherrequirementsfortheconstructionofphoto-chromicdevices.NegativephotochromismistheoppositeDownloadedviaUNIVOFPRINCEEDWARDISLANDonMay16,2021at13:42:56(UTC).phenomenonoftheconventionalphotochromism,whichstartsSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.fromacoloredstateandshowsdecolorationbyvisiblelight.Negativephotochromismisattractivefromtheviewpointof21−23theutilizationofvisiblelightastrigger.Thephoto-Figure1.Molecularstructuresofalkylammoniumsurfactantsofgeneratedcolorlessisomershavenoabsorptioninthevisibledioctadecyldimethylammoniumcation(2C18)anddioleyldimethy-region,makingefficientcolorchangepossible.lammoniumcation(DODA)andphotochromismofSPinMPSS/Spiropyran(SP)isknowntoundergophotochromismbyorganophilicclayhybridsand(b)conceptualillustrationofthegeneratingzwitterionicphotomerocyanineinorganicsol-molecularmigrationofSP/MCinMPSS/organophilicclayhybrids.24−27vents.Thankstothestabilizationofthecoloredmerocyanine(MC)bytheinteractionswithmesoporoussilicas,anegativephotochromicsystem,whichshowsphoto-decolorationandthermalcolorationstartingfromMCadsorbedintheporewasdeveloped(Figure1a)re-Received:January17,2021cently.24,25,28−30Photoinducedmoleculardiffusion/transferRevised:March5,2021betweenthephases(throughoil−water31−33andliquid−Published:March17,202128,34−36solidinterfaces)hasbeenreportedsofartoachieve/controlphotochromisms.Althoughphotochromisms/negative37,38photochromismsinthesolid-statematerialsareimportant©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.langmuir.1c001503702Langmuir2021,37,3702−3708

1Langmuirpubs.acs.org/LangmuirArticle39,40temperature.The2C18-andDODA-exchangedclaysweredesignatedforpracticalapplication,theyhavebeenscarcelyreported.Basedontheuniquenegativephotochromismachievedbytheas2C18-clayandDODA-clay,respectively.photoinducedmolecularmigrationbetweentwosolids,39,40CharacterizationofOrganophilicClays.AnX-raydiffractom-nanoporoussolidshavebeenexaminedtoaccommodateMCeter(BrukerNewD8ADVANCEequippedwithmonochromaticCuKαradiation)wasusedtocharacterizethemaincomponentfortheobjectivetocontrolthereactionyieldsand5037,41−43(smectite),asreportedpreviously.Thesmall-angleX-raydiffractionkinetics.Asanexample,itwasfoundthatthepatternsofbentonite,2C18-clay,andDODA-clayareshowninmesoporoussilicaswithlargerporesacceleratedthethermalFiguresS1andS2intheSupportingInformation.Thebentonitehadacoloration,whichwasthoughttobeduetosmootherdiffusiondiffractionpeakat5.83°(1.51nm),whichwascomparabletothe44ofthephotochromicmoleculesinthelargerpores.typicalbasalspacingofcalcium-typebentonite.AftertheionexchangeOrganophilicclay,whichhascationicsurfactantsinthereactions,diffractionpeaksat2.48°for2C18-clayand2.52°forinterlayerspaceofthesmectitegroupofclayminerals,isDODA-clayappeared,whichcorrespondedtothebasalspacingsof453.56nmfor2C18-clayand3.50nmforDODA-clay,respectively.Theregardedasauniqueplatformofhydrophobiccharacter.MixinganorganophilicclaywithamesoporoussilicaincreaseofthebasalspacingindicatedthesuccessfulintercalationofcontainingMCwasreportedtoachieveefficientnegativethealkylammoniumsurfactants,andthechangesofthebasalspacingsphotochromismofSP/MC,wheretheorganophilicclayowingtothealkylammoniumsurfactantswerealmostthesame.29,46Theadsorbedamountofthesurfactantsintheproductswasaccommodatedthehydrophobiccolorlessisomer(SP).analyzedbythermogravimetricanalysis(LinseisSTAPT1600)withaThediffusionofSPisthoughttobeaffectedbythedifferencesheatingrateof10°C/minunderanairatmosphere,asreportedinthestructuralcharacteristicsoforganophilicclays;the50previously.Thermogravimetricanalysis(TGA)curvesof2C18-clayapplicationofvariousorganophilicclaystoaccommodateSPandDODA-clayweresimilar(FigureS2intheSupportingdifferentlyisworthinvestigatinginordertodesignthenegativeInformation).TheTGAshowedthatmasslossbyadsorbedwaterphotochromismthroughthephotoinducedmigration.Molec-in2C18-clayandDODA-clayintherangeof25−200°Cwassmallerulardiffusionoforganicdyesinorganophilicclaysisthoughtthanthatofthebentonite,implyingthatsurfaceofthebentonitewastodependonthemolecularstructureofthesurfactantsmodifiedtobehydrophobic.Theamountsoftheadsorbedsurfactantsthroughthehydrophobicityandthepackingintheinterlayerweredeterminedtobe100mmol/100gofthebentoniteforbothspace.45,47,48Longerandlargernumberofalkylchainsled2C18-clayandDODA-clay.higherhydrophobicityoforganophilicclays48,49sothatPreparationofHybridsofSPintheOrganophilicClays.TheSPsolutionoftoluene(1mL,9.0×10−4M)wasaddedto40mgofdioctadecyldimethylammonium(2C18showninFigure1a)-2C18-clayandDODA-clayandmixedwithanagatemortarandaexchangedclayshavebeenusedextensivelyformanypestlefor10mininthedarkat30°C.Thesamplesweredriedinapplicationsincludingadsorption/separation,catalyst’ssup-45,47,48vacuumovernightinthedarktoobtainpaleredpowder[designatedport,andsoon.Inadditiontotheexpansionoftheas2C18-clay(SP)andDODA-clay(SP)].interlayerspaceandthehydrophobicity,thestatesoftheSynthesisofMesoporousSilicaSpheres.Themesoporous50surfactantsaffectthediffusionofguestspecies.Inthepresentsilicasphere(MPSS)waspreparedaccordingtothepreviousstudy,anorganophilicclaymodifiedwithdioleyldimethylam-46,52reports.Hexadecyltrimethylammoniumbromide(CTAB,2.5g),50,51moniumions(DODA,showninFigure1a)wasused.Theaqueousammonia(28−30%,15.6mL),ethanol(76mL),anddifferenceofDODAfrom2C18isdoublebondsinoleyldeionizedwater(50mL)weremixedwithashakerfor15minatsubstituents(Figure1a),whichaffectsthecharacteristicsoftheroomtemperature.Tothissolutionwasaddedtetraethoxysilane(4.7molecularassemblyofthesurfactantsintheinterlayerspaceofmg)andmixedwiththeshakeratroomtemperaturefor2h.Thetheclayandshowedafluid-likebehavior,asexaminedbyresultingprecipitatewasfiltered,washedwithdeionizedwaterand50,51methanol,anddriedinvacuumovernight.Bythecalcinationoftheinfraredandquasielasticneutronscattering.Thefluid-likesolidat550°Cfor5h(heatingrate:10°C/min),theMPSSwasstateoftheDODA-exchangedclayisexpectedtoaffecttheobtained.photochemicalbehavioroffunctionaldyescausedbytheCharacterizationofMPSS.AtypeIVisothermintheIUPACsmootherdiffusion/migrationofSP/MCbetweentheclassificationwasobservedbytheN2adsorption−desorptionisothermmesoporoussilicaandtheDODA-clayoverthoseintheofMPSSmeasuredonaBELSORP-miniII(MicrotracBELCorp.),as2C18-clay,asschematicallyshowninFigure1b.46previouslyreported(FigureS3intheSupportingInformation),suggestingthemesoporesofMPSS.TheBrunauer−Emmett−Teller■EXPERIMENTALDETAILSsurfaceareaandBJHporesizeofMPSSwereestimatedtobe1060m2/gand2.2nm,respectively.Materials.AnaturalbentonitewasobtainedfromHOJUNCo.,PhotoinducedAdsorption.Atotalof40mgofMPSSwasaddedLtd.ItscationexchangecapacitywasdeterminedbytheKjeldahlmethodtobe66mequiv/100g.Dioleyldimethylammonium(DODA)to20mLoftoluenesolutioncontaining4.8mgofSP,andthechloride(74−77%inaqueousisopropylalcohol)anddioctadecyldi-suspensionwassonicatedfor1mintoobtainahomogeneousmethylammonium(2C18)chloride(96%)werepurchasedfromLionsuspension.Thesuspensionwasirradiatedusinga365nmUVspotSpecialtyChemicalsCo.,Ltd.ToluenewaspurchasedfromMerck.light(Ushio,SPL-2)for2minundermagneticstirringat30°C.The1,3,3-Trimethylindolino-6′-nitrobenzopyrylospiran(SP)waspur-resultingredsuspensionwascentrifugedfor10min(3000rpm)tochasedTokyoChemicalIndustryCo.,Ltd.Allthechemicalswereobtainthesediment.Theredsediment[designatedasMPSS(MC)]usedwithoutfurtherpurification.wasdriedinvacuumovernightinthedark.UV−visabsorptionspectraModificationoftheBentonitebyIonExchangewithofthesupernatantsbeforeandafterUVirradiationweremeasuredtoAlkylammoniumSurfactants.PreviouslyreportedorganophilicestimateanamountoftheadsorbedMC,asshowninFigureS2.The50absorbanceat335nmwasdecreasedfrom1.367to1.094,whichclayswereusedinthispaper,whichwerepreparedasfollows.Ionexchangeofinterlayercationsoftheclaywith2C18andDODAionscorrespondedto24mg/(gofMPSS)ofMCwasadsorbedonMPSS.wasperformedinaqueoussolutionsofthesurfactants.TheamountofPreparationofHybridsoftheOrganophilicClaysandtheaddedsurfactantswas200mequiv/100goftheclay.ThereactionMPSS(MC).Atotalof20mgofMPSS(MC)wasmixedwith20mgofwasconductedundermagneticstirringatroomtemperaturefor5DODA-clayand2C18-claywiththeagatemortarandthepestlefor10days.TheproductswerethencollectedbycentrifugationandwashedmintoobtainredpowderofMPSS(MC)with2C18-clay[designatedwithdeionizedwateruntilanegativeAgNO3testwasobtained.Theas2C18-clay/MPSS(MC)]andwithDODA-clay[designatedassolidproductsweredriedunderareducedpressureatroomDODA-clay/MPSS(MC)]inthedarkat30°C.3703https://doi.org/10.1021/acs.langmuir.1c00150Langmuir2021,37,3702−3708

2Langmuirpubs.acs.org/LangmuirArticleScanningElectronMicroscopy.ScanningelectronmicroscopyNegativePhotochromismof2C18-Clay/MPSS(MC)(SEM)ofMPSS,2C18-clay/MPSS(MC)andDODA-clay/MPSS-andDODA-Clay/MPSS(MC).Byvisiblelightirradiation,(MC)wasperformedbyaJEOLJSM-7610Ffield-emissionscanningthecolorofMPSS(MC)turnedfromvividredtopalered,aselectronmicroscope.showninFigure3a,whilethoseof2C18-clay/MPSS(MC)andPhotochromism.TheUV−visabsorptionspectraofthehybridswereestimatedfromdiffusereflectancespectrabytheKuberka-MunkfunctionmeasuredbyaUV−visiblespectrometer(LAMDA1050,PerkinElmer)at20°C.UVandvisiblelightirradiationwerecarriedoutwiththe365nmUVspotlight(SPL-2,Ushio)andwitha100WXelamp(Sunlitesolarsimulator,ABETtechnologies)atroomtemperature.VisiblelightirradiationonMPSS(MC),2C18-clay/MPSS(MC),andDODA-clay/MPSS(MC)wascarriedoutfor2minatroomtemperature.Lightirradiationon2C18-clay(SP)wascarriedoutintwoways:(1)UVandsubsequentvisiblelightirradiationfor2min,respectivelyand(2)visiblelightandsubsequentUVlightirradiationfor2min,respectively.■RESULTSANDDISCUSSIONUV−VisAbsorptionSpectraof2C18-Clay/MPSS(MC)andDODA-Clay/MPSS(MC).MPSS-containingphotomer-ocyaninewaspreparedbythephotoinducedadsorptionofMCfromatoluenesolutionofSPandwasusedasastarting24,28material.Theabsorptionspectraofthered-coloredMPSS-Figure3.Photographsofthechangesofthecolorof(a)MPSS(MC),containingMC[designatedasMPSS(MC)],MPSS(MC)(b)2C18-clay/MPSS(MC),and(c)DODA-clay/MPSS(MC)bythemixedwith2C18-clay[2C18-clay/MPSS(MC)],andMPSS-visiblelightirradiationfor2minandsubsequentstorageinthedarkat(MC)mixedwithDODA-clay[DODA-clay/MPSS(MC)]are20°C.showninFigure2.AbsorptionofMPSS(MC)at387nmandDODA-clay/MPSS(MC)decolorized,asshownbythephoto-graphs(Figure3b,c).Thisobservationsuggestedthenegativephotochromicefficiencyincreasedbythepresenceoftheorganophilicclays,whichaccommodatedthephotogeneratedcolorlessSP.Bysubsequentstorageinthedarkfor12hforMPSS(MC)and14hfor2C18-clay/MPSS(MC),theyreturnedtotheirinitialcolor,whereasDODA-clay/MPSS-(MC)changedtoorange-red.Thedifferenceinthecolorchange(redtoorange-red)wasthoughttobeduetothedecreaseoftheabsorptioninthevisibleregion,sothatUV−visabsorptionspectraof2C18-clay/MPSS(MC)andDODA-clay/MPSS(MC)weremeasured,andthephotochromicFigure2.AbsorptionspectraofMPSS(MC)(blackline),2C18-clay/charactersarediscussedinthenextparagraph.MPSS(MC)(blueline)andDODA-clay/MPSS(MC)(greenline).TheabsorbanceofMPSS(MC)wasdividedby2forthecomparisonInordertoevaluatethereactionsmorequantitatively,theofthepeakposition.colorchangeswerefollowedbyUV−visabsorptionspectros-copy,andthechangesareshowninFigure4.Theabsorbance506nmdecreasedandthatat417nmincreasedbymixingwithofMPSS(MC)at507nmdecreasedfrom1.55to0.12(92%),theorganophilicclays.ThedecreaseoftheabsorptiononMCandtheinitialabsorptionspectrumwasregeneratedinthedarkat506nmsuggestedthemigrationofapartofMCtotheatroomtemperaturewiththesimultaneoustwofirst-orderreactionswiththerateconstantsof0.267and1.00h−1(Figureorganophilicclays.ThechangeintheabsorptionspectrumbymixingwithDODA-claywasmoreapparentthanthatwith4a,b).Uponthevisiblelightirradiationfor2min,the2C18-clay.FiguresS5andS6intheSupportingInformationabsorbanceof2C18-clay/MPSS(MC)decreasedfrom0.69toshowUV−visabsorptionspectrajustaftersamplepreparation0.30(43%)at394nmandfrom0.78to0.05(94%)at517nm,of2C18-clay/MPSS(MC)andDODA-clay/MPSS(MC).TheasshowninFigure4candthatofDODA-clay/MPSS(MC)absorptionspectraof2C18-clay/MPSS(MC)decreasedbydecreasedfrom0.74to0.11(80%)at417nmandfrom0.55tostorageinthedarkat30°Cretainingthespectralshape,0.01(98%)at504nm,asshowninFigure4e.ThelargersuggestingthatMCwasconvertedtoSPbymigratingto2C18-changeobservedforDODA-clay/MPSS(MC)wasascribedtoclay.Thestorageinthedarkat20°CincreasedabsorptionatthediffusionandaccommodationofthephotogeneratedSP405nmanddecreasedat514nm,whichsuggestedthattheintoDODA-claythatweremoreefficientthanthoseinto50protonatedMCgeneratedatarelativelylowtemperature.The2C18-clay.BysubsequentstorageofthesampleinthedarkprotonatedMC,whichisapossibleisomer,wasthoughttobefor14h,theabsorbanceof2C18-clay/MPSS(MC)increasedgeneratedbythereactionwithhydroxylgroupsattheedgesofto0.97(at394nm)and1.07(at517nm),whichwerelarger36,53,54thantheinitialvalues(0.69and0.78).Theincreasedtheclay.ThestorageofDODA-clay/MPSS(MC)inthedarkat20and30°Cgavesimilarchangesinthespectra,wherepopulationofthethermodynamicallystableMCcomparedtheabsorptionat417nmincreasedandthatat502nmtoSPin2C18-clay/MPSS(MC)wasexplainedbydifferentdecreased.Theabsorptionat417nmsuggestedthatthethermodynamicequilibriumafterthesamplepreparation(30protonatedMCwasgeneratedinDODA-clay.°C,beforethemeasurement)andduringthemeasurement(203704https://doi.org/10.1021/acs.langmuir.1c00150Langmuir2021,37,3702−3708

3Langmuirpubs.acs.org/LangmuirArticlestructuresofthesaturated2C18andtheunsaturatedDODA.Thefluid-likeassemblyofDODAledtheefficientdiffusionandaccommodationofSP.Thethermalbackwardreactionsfor2C18-clay/MPSS(MC)andDODA-clay/MPSS(MC)werefittedbyasingle-exponentialeq1withtherateconstantsof0.217h−1(half-life:3.2h)and0.249h−1(half-life:2.8h),respectively.abs()tAk=−11exp(t)(1)where,abs(t),A1andk1areabsorbanceattimet(min),amplitude,andafirst-orderrateconstant(h−1),respectively.Thedecreaseofthereactioncomponentsfromtwotoonebytheadditionoftheorganophilicclayssuggestedthepossiblemigration/accommodationofthephotogeneratedSPintothe29organophilicclays.ThelargerrateconstantofthethermalbackwardreactionforDODA-clay/MPSS(MC)thanthatfor2C18-clay/MPSS(MC)correspondstothepreviouslyreportedeffectivediffusionoforganicdyesinDODA-clay(Table50,511).Thecommonrateconstantsat417and548nmofDODA-clay/MPSS(MC)indicatedthegenerationoftheprotonatedMCandisomerizationfromSPtoMCsimultaneously.Thequickresponsederivedfromthefastreactionandfilmfabricationofthephotochromicmaterialsareimportantissuesforthepracticalapplicationssuchassmart256windowsandholography.Accordingly,itisworthinvestigatingtoexaminethemolecularmigrationinvariousmediawithdesignedconnection.Thepossibilityoffabrication5758ofmesoporoussilicasandorganophilicclaysintofilmswillFigure4.Changesoftheabsorptionspectraof(a)MPSS(MC),(c)beutilizedtocontrolthebackwardreactionfurtherandto2C18-clay/MPSS(MC),and(e)DODA-clay/MPSS(MC)andtimeprofilesof(b)MPSS(MC),(d)2C18-clay/MPSS(MC),and(f)designphotochromicdevices.DODA-clay/MPSS(MC)inthedarkaftervisiblelightirradiationforIsomerizationofSPintheOrganophilicClays.The2minat20°C.absorbanceat417nmwasincreasedbymixingMPSS(MC)andtheorganophilicclays(Figure2).TheincreaseisthoughttobetotheelectrostaticinteractionbetweenMCandthe°C)(thedetailedexperimentalmethodisgiveninthehydroxylgroupsattheedgeofthesilicatelayeroftheclaytoSupportingInformation).AsshowninFigureS5intheformtheprotonatedMC.AsshowninFigure5,SPin2C18-SupportingInformation,theabsorbanceat517nm(1.07)wascomparabletothatrecordedafterstoragefor9hat20°C(1.05),suggestingthatMC,SP,andtheprotonatedMCwereinthermodynamicequilibriumwithrelativelysmalldifferenceinthethermodynamicstability.Theisomerratioisthoughtto55beaffectedbytheatmosphereandbytemperature,suggestingthepossibilitytocontrolthenegativephotochromicreactionfurther.Therepeatedreactionsofthenegativephotochromicreactionisworthinvestigatingtounderstandthereactionmechanism.InDODA-clay/MPSS(MC),theabsorbanceat417nmincreasedto0.91andthatat504nmincreasedto0.4,whichwere123and73%oftheinitialonesFigure5.ChangesofUV−visabsorptionspectraof2C18-clay(SP)by(0.74and0.55),asshowninaredsolidlineinFigure4e.The(a)UVandsubsequentvisiblelightirradiationand(b)visiblelightincreaseoftheabsorbanceat417nmwasthoughttobeduetoandsubsequentUVirradiationfor2minat20°C.theformationoftheprotonatedMCfromtheaccommodatedSP,whichaccompaniedthedecreaseoftheabsorbanceintheclay[designatedas2C18-clay(SP)]hadabsorptionat353andvisibleregioncomparedtothatintheinitialstate.The546nmandashoulderat410nm.Theabsorptionat546nmdifferencebetween2C18-clay/MPSS(MC)andDODA-clay/indicatedthatsomeofSPwasthermallyconvertedtoMCin59−61MPSS(MC)isderivedfromthedifferenceofthechemicalthehydrophobic2C18-clay,asreportedpreviously.Table1.PhotodecolorationunderVisibleLightIrradiation,Degree,RateConstants,andHalf-LivesoftheThermalColorationofMPSS(MC),2C18-Clay/MPSS(MC),andDODA-Clay/MPSS(MC)samplenamedegreeofphotodecoloration(%)rateconstant(h−1)half-life(h)referencesMPSS(MC)92(at510m)0.2671.002.60.69442C18-clay/MPSS(MC)94(at517nm)0.2173.2thispaperDODA-clay/MPSS(MC)98(at504nm)0.2492.8thispaper3705https://doi.org/10.1021/acs.langmuir.1c00150Langmuir2021,37,3702−3708

4Langmuirpubs.acs.org/LangmuirArticleUV(365nm)andvisiblelightirradiationwerecarriedoutwiththesizeofseveralhundredsofnanometersto1μminon2C18-clay(SP)bytwoways:(1)UVandsubsequentvisiblediameter,andsomeparticlesaggregated.Platyparticlesofthelightirradiationfor2min(Figure5a)and(2)visibleandorganophilicclayswereattachedonMPSS(Figure6c,d).ThesubsequentUVlightirradiationfor2min(Figure5b).Therateconstantsofthethermalbackwardreactionseenfor2C18-absorptionat390nmappearedandthatat546nmincreasedclay/MPSS(MC)andDODA-clay/MPSS(MC)weresmallerbytheUVirradiation(bluelineofFigure5a).Thesubsequentthanthat(0.427h−1)inamesoporoussilicawhoseexternal46visiblelightirradiationledtothedecreaseoftheabsorbanceatsurfacewasorganicallyfunctionalized.Thus,themobilityin546nm,whilethatat390nmremainedunchanged(yellowbothphasesandtheconnectionofthetwophases(interfacelineofFigure5a).AsshowninFigure5b,theabsorbanceatarea)aretheparametersthataffecttherateconstant.In390nmdidnotchangebythevisiblelightirradiation,whileitadditiontotherateconstant,thetimerequiredtoreachtheincreasedbythesubsequentUVirradiation.Thephoto-equilibriumisanotheraspectforthepracticalapplicationofresponsesindicatedthattheabsorptionat390nm,whichthephotochromism/negativephotochromism,sothattheincreasedbytheUVirradiationto2C18-clay(SP),wasnotstudiesonthenegativephotochromisminothersystemsattributabletoMCandwasthoughttobeduetotheincludinghydrophilicandhydrophobicphasesareworth36,53,5462−65protonatedMC.Asshownbyblackandredlinesininvestigating.Figure5b,theabsorbance(0.345)at545nmafterthestorageinthedarkfor7hwascomparabletotheinitialabsorbance■CONCLUSIONS(0.372).TheincreaseoftheprotonatedMCat20°CandEfficientnegativephotochromismofSP/MCwasachievedbydecreaseat30°C(FigureS5intheSupportingInformation)molecularmigrationbetweenaMPSSandanorganophilicclaysuggestedthatthethermodynamicstabilityoftheisomerswasexchangedwithanunsaturatedfluid-likealkylammoniumsuggestedasprotonatedMC>MC>SP.DuetothelimitedsurfactantoftheDODAcation.Thehybridwaspreparedbyamountofhydroxylgroups,theamountoftheprotonatedMCthefollowingtwosteps:(i)photoinducedadsorptionofMCwassmallifcomparedwithotherisomersevenintheontoMPSSand(ii)subsequentmixingwiththeorganophilicequilibriumstate.Accordingtotheequilibrium,thestabilityclay.Decolorationbyvisiblelight(98%)andaspontaneousofMCinMPSSseemstobethedrivingforceofthe−1thermalcolorationrate(0.249h)ofMC/SPinthehybridofspontaneousthermalbackwardreaction,whichaccompaniedtheporoussilicasphereandtheDODAexchangedclaywerethemigrationofSP/MCandtheconversionfromMCtoSPofhigherthanthoseinthehybridwithadioctadecyldimethy-2C18-clay/MPSS(MC)andDODA-clay/MPSS(MC).lammonium.ThethermodynamicisomerizationofSPintheBecauseDODA-claycontainingSP[designatedasDODA-organophilicclayssuggestedthatthediffusionofSPandtheclay(SP)]showedanormalphotochromismsimilartothatstabilityofMCinthemesoporoussilicainducedtheobservedfor2C18-clay(SP)(thechangeintheabsorptionspontaneousbackwardreactionbymolecularmigration.ThespectraisshowninFigureS7intheSupportingInformation),fluid-likestateprovidedbytheunsaturationintheDODAattheinitialstate,theratiooftheabsorbanceat353nmcontributedtotheefficientaccommodationandmigrationofattributabletoSP(0.951)andthatat546nmattributabletospiropyranin,theorganophilicpart(organophilicclay),ifMC(0.406)of2C18-clay(SP)was2.3/1.TheSP/MCratioofcomparedwiththatinthedioctadecyldimethylammoniumtheabsorbanceat348nm(1.84)and542nm(0.571)was3.2/clay.1forofDODA-clay(SP).ThisdifferencesuggestedtheefficientaccommodationofSPinDODA-clay,whichwas■thoughttocontributethehigherphotoconversionofDODA-ASSOCIATEDCONTENTclay/MPSS(MC)thanthatof2C18-clay/MPSS(MC).*sıSupportingInformationSEMof2C18-Clay/MPSSandDODA-Clay/MPSS.SEMTheSupportingInformationisavailablefreeofchargeatimagesofMPSSareshowninFigures6a,bandS9inthehttps://pubs.acs.org/doi/10.1021/acs.langmuir.1c00150.SupportingInformation.TheMPSSsweresphericalparticlesSmall-angleX-raydiffractionpatterns,thermogravimetricanalysisdata,N2gasadsorptiondata,UV−visabsorptionspectratocalculatetheadsorbedamountofMCandtoshowphotochromismofSPinDODA-clay,andSEMimages(PDF)■AUTHORINFORMATIONCorrespondingAuthorMakotoOgawa−SchoolofEnergyScienceandEngineering,VidyasirimedhiInstituteofScienceandTechnology(VISTEC),Rayong21210,Thailand;orcid.org/0000-0002-3781-2016;Email:makoto.ogawa@vistec.ac.thAuthorsTetsuoYamaguchi−SchoolofEnergyScienceandEngineering,VidyasirimedhiInstituteofScienceandTechnology(VISTEC),Rayong21210,Thailand;orcid.org/0000-0002-6697-2916Figure6.SEMimagesof(a,b)MPSS,(c)2C18-clay/MPSS(MC),KamonnartJaaImwiset−SchoolofMolecularScienceandand(d)DODA-clay/MPSS(MC).Engineering,VidyasirimedhiInstituteofScienceand3706https://doi.org/10.1021/acs.langmuir.1c00150Langmuir2021,37,3702−3708

5Langmuirpubs.acs.org/LangmuirArticleTechnology(VISTEC),Rayong21210,Thailand;(11)Brummel,O.;Besold,D.;Döpper,T.;Wu,Y.;Bochmann,S.;orcid.org/0000-0001-7339-2509Lazzari,F.;Waidhas,F.;Bauer,U.;Bachmann,P.;Papp,C.;Steinrück,H.-P.;Görling,A.;Libuda,J.;Bachmann,J.EnergyStorageinStrainedCompletecontactinformationisavailableat:OrganicMolecules:(Spectro)ElectrochemicalCharacterizationofhttps://pubs.acs.org/10.1021/acs.langmuir.1c00150NorbornadieneandQuadricyclane.ChemSusChem2016,9,1424−1432.AuthorContributions(12)Waidhas,F.;Jevric,M.;Fromm,L.;Bertram,M.;Görling,A.;ThemanuscriptwaswrittenthroughcontributionsofallMoth-Poulsen,K.;Brummel,O.;Libuda,J.Electrochemicallyauthors.AllauthorshavegivenapprovaltothefinalversionofControlledEnergyStorageinaNorbornadiene-BasedSolarFuelthemanuscript.with99%Reversibility.NanoEnergy2019,63,103872.(13)Kucharski,T.J.;Ferralis,N.;Kolpak,A.M.;Zheng,J.O.;FundingNocera,D.G.;Grossman,J.C.TemplatedAssemblyofPhoto-ThisworkwassupportedbytheResearchChairGrant2017switchesSignificantlyIncreasestheEnergy-StorageCapacityofSolar(grantnumberFDA-CO-2560-5655)fromtheNationalThermalFuels.Nat.Chem.2014,6,441−447.ScienceandTechnologyDevelopmentAgency(NSTDA),(14)Zhang,Z.-Y.;He,Y.;Wang,Z.;Xu,J.;Xie,M.;Tao,P.;Ji,D.;Thailand.Moth-Poulsen,K.;Li,T.PhotochemicalPhaseTransitionsEnableNotesCoharvestingofPhotonEnergyandAmbientHeatforEnergeticTheauthorsdeclarenocompetingfinancialinterest.MolecularSolarThermalBatteriesThatUpgradeThermalEnergy.J.Am.Chem.Soc.2020,142,12256−12264.■(15)Teepakakorn,A.;Yamaguchi,T.;Ogawa,M.TheImprovedACKNOWLEDGMENTSStabilityofMolecularGuestsbytheConfinementintoNanospaces.Oneoftheauthors(T.Y.)acknowledgestheVidyasirimedhiChem.Lett.2019,48,398−409.InstituteofScienceandTechnologyforthePostdoctoral(16)Yokoyama,S.;Hirose,T.;Matsuda,K.PhotoinducedFour-Fellowship,andanotherauthor(K.J.I.)acknowledgestheStateThree-StepOrderingTransformationofPhotochromicscholarshipfromtheVidyasirimedhiInstituteofScienceandTerthiopheneataLiquid/SolidInterfaceBasedonTwoPrinciples:Technology.PhotochromismandPolymorphism.Langmuir2015,31,6404−6414.(17)OrganicPhotochromicandThermochromicCompounds;Crano,J.■C.,Guglielmetti,R.J.,Eds.;SpringerUS:Boston,MA,2002.ABBREVIATIONS(18)Gonzalez,A.;Kengmana,E.S.;Fonseca,M.V.;Han,G.G.D.SP,spiropyran;MC,merocyanine;2C18,dioctadecyldimethy-Solid-StatePhotoswitchingMolecules:StructuralDesignforIsomer-lammonium;DODA,dioleyldimethylammonium;MPSS,izationinCondensedPhase.Mater.TodayAdv.2020,6,100058.mesoporoussilicasphere(19)PhotomechanicalMaterials,Composites,andSystems;White,T.J.,Ed.;JohnWiley&Sons,Ltd:Chichester,UK,2017.■(20)Wakayama,Y.;Hayakawa,R.;Higashiguchi,K.;Matsuda,K.REFERENCESPhotochromismforOpticallyFunctionalizedOrganicField-Effect(1)Barachevsky,V.A.AdvancesinPhotonicsofOrganicTransistors:AComprehensiveReview.J.Mater.Chem.C2020,8,Photochromism.J.Photochem.Photobiol.Chem.2018,354,61−69.10956−10974.(2)Irie,M.;Fukaminato,T.;Matsuda,K.;Kobatake,S.Photo-(21)Aiken,S.;Edgar,R.J.L.;Gabbutt,C.D.;Heron,B.M.;chromismofDiaryletheneMoleculesandCrystals:Memories,Hobson,P.A.NegativelyPhotochromicOrganicCompounds:Switches,andActuators.Chem.Rev.2014,114,12174−12277.ExploringtheDarkSide.DyesPigm.2018,149,92−121.(3)Ling,H.;Tan,K.;Fang,Q.;Xu,X.;Chen,H.;Li,W.;Liu,Y.;(22)Yamaguchi,T.;Kobayashi,Y.;Abe,J.FastNegativeWang,L.;Yi,M.;Huang,R.;Qian,Y.;Xie,L.;Huang,W.Light-Photochromismof1,1′-Binaphthyl-BridgedPhenoxyl−ImidazolylTunableNonvolatileMemoryCharacteristicsinPhotochromicRadicalComplex.J.Am.Chem.Soc.2016,138,906−913.RRAM.Adv.Electron.Mater.2017,3,1600416.(23)Kometani,A.;Inagaki,Y.;Mutoh,K.;Abe,J.RedorNear-(4)Dashitsyrenova,D.D.;Lvov,A.G.;Frolova,L.A.;Kulikov,A.InfraredLightOperatingNegativePhotochromismofaBinaphthyl-V.;Dremova,N.N.;Shirinian,V.Z.;Aldoshin,S.M.;Krayushkin,M.BridgedImidazoleDimer.J.Am.Chem.Soc.2020,142,7995−8005.M.;Troshin,P.A.MolecularStructure-ElectricalPerformance(24)Okabe,Y.;Ogawa,M.PhotoinducedAdsorptionofSpiropyranRelationshipforOFET-BasedMemoryElementsComprisingUnsym-intoMesoporousSilicasasPhotomerocyanine.RSCAdv.2015,5,metricalPhotochromicDiarylethenes.J.Mater.Chem.C2019,7,101789−101793.6889−6894.(25)Kinashi,K.;Nakamura,S.;Ono,Y.;Ishida,K.;Ueda,Y.Reverse(5)Pardo,R.;Zayat,M.;Levy,D.PhotochromicOrganic−InorganicPhotochromismofSpiropyraninSilica.J.Photochem.Photobiol.Chem.HybridMaterials.Chem.Soc.Rev.2011,40,672.2010,213,136−140.(6)Hirose,T.;Irie,M.;Matsuda,K.Temperature-LightDual(26)Mühlstein,L.A.;Sauer,J.;Bein,T.TuningtheThermalControlofCloudingBehaviorofanOligo(EthyleneGlycol)-RelaxationofaPhotochromicDyeinFunctionalizedMesoporousDiaryletheneHybridSystem.Adv.Mater.2008,20,2137−2141.(7)Renzi-Hammond,L.M.;Hammond,B.R.TheEffectsofSilica.Adv.Funct.Mater.2009,19,2027−2037.PhotochromicLensesonVisualPerformance.Clin.Exp.Optom.2016,(27)Wirnsberger,G.;Scott,B.J.;Chmelka,B.F.;Stucky,G.D.Fast99,568−574.ResponsePhotochromicMesostructures.Adv.Mater.2000,12,(8)Shinkai,S.;Ogawa,T.;Nakaji,T.;Kusano,Y.;Nanabe,O.1450−1454.PhotocontrolledExtractionAbilityofAzobenzene-BridgedAzacrown(28)Yamaguchi,T.;Maity,A.;Polshettiwar,V.;Ogawa,M.Ether.TetrahedronLett.1979,20,4569−4572.PhotochromismofaSpiropyraninthePresenceofaDendritic(9)Xie,X.;Mistlberger,G.;Bakker,E.ReversiblePhotodynamicFibrousNanosilica;SimultaneousPhotochemicalReactionandChloride-SelectiveSensorBasedonPhotochromicSpiropyran.J.Am.Adsorption.J.Phys.Chem.A2017,121,8080−8085.Chem.Soc.2012,134,16929−16932.(29)Yamaguchi,T.;Maity,A.;Polshettiwar,V.;Ogawa,M.Negative(10)Vidavsky,Y.;Yang,S.J.;Abel,B.A.;Agami,I.;Diesendruck,C.PhotochromismBasedonMolecularDiffusionBetweenHydrophilicE.;Coates,G.W.;Silberstein,M.N.EnablingRoom-TemperatureandHydrophobicParticlesintheSolid-State.Inorg.Chem.2018,57,MechanochromicActivationinaGlassyPolymer:Synthesisand3671−3674.CharacterizationofSpiropyranPolycarbonate.J.Am.Chem.Soc.2019,(30)Ariga,K.;Aimiya,T.;Zhang,Q.;Okabe,A.;Niki,M.;Aida,T.141,10060−10067.“Proteosilica”aNovelNanocompositewithPeptideAssembliesin3707https://doi.org/10.1021/acs.langmuir.1c00150Langmuir2021,37,3702−3708

6Langmuirpubs.acs.org/LangmuirArticleSilicaNanospace:PhotoisomerizationofSpiropyranDopedinChiralfinedinaTwoDimensionalNanospaceStudiedbytheHost-GuestEnvironment.Int.J.Nanosci.2002,01,521−525.Reactions.Colloid.Surface.Physicochem.Eng.Aspect.2020,605,(31)Helmy,S.;Leibfarth,F.A.;Oh,S.;Poelma,J.E.;Hawker,C.J.;125352.ReaddeAlaniz,J.;Read,J.PhotoswitchingUsingVisibleLight:A(51)Imwiset,K.J.;Hayakawa,T.;Fukushima,Y.;Yamada,T.;NewClassofOrganicPhotochromicMolecules.J.Am.Chem.Soc.Ogawa,M.NovelFlexibleSupramolecularAssemblyofDioleyldime-2014,136,8169−8172.thylammoniumIoninaTwo-DimensionalNanospaceStudiedby(32)Helmy,S.;Oh,S.;Leibfarth,F.A.;Hawker,C.J.;ReaddeNeutronScattering.Langmuir2019,35,13977−13982.Alaniz,J.DesignandSynthesisofDonor−AcceptorStenhouse(52)Grün,M.;Unger,K.K.;Matsumoto,A.;Tsutsumi,K.NovelAdducts:AVisibleLightPhotoswitchDerivedfromFurfural.J.Org.PathwaysforthePreparationofMesoporousMCM-41Materials:Chem.2014,79,11316−11329.ControlofPorosityandMorphology.MicroporousMesoporousMater.(33)Lerch,M.M.;Szymanski,W.;Feringa,B.L.The(Photo)-́1999,27,207−216.ChemistryofStenhousePhotoswitches:GuidingPrinciplesand(53)Raymo,F.M.;Giordani,S.SignalProcessingattheMolecularSystemDesign.Chem.Soc.Rev.2018,47,1910−1937.Level.J.Am.Chem.Soc.2001,123,4651−4652.(34)Jia,S.;Fong,W.-K.;Graham,B.;Boyd,B.J.Photoswitchable(54)Shimizu,I.;Kokado,H.;Inoue,E.PhotoreversiblePhoto-MoleculesinLong-WavelengthLight-ResponsiveDrugDelivery:graphicSystems.VI.ReversePhotochromismof1,3,3-Trimethylspiro-FromMolecularDesigntoApplications.Chem.Mater.2018,30,[Indoline-2,2′-Benzopyran]-8′-CarboxylicAcid.Bull.Chem.Soc.Jpn.2873−2887.1969,42,1730−1734.(35)Aznar,E.;Martínez-Máñez,R.;Sancenón,F.Controlled(55)Okada,T.;Nozaki,N.;Seo,J.;Kwon,J.E.;Park,S.Y.;ReleaseUsingMesoporousMaterialsContainingGate-likeScaffold-Hashizume,H.;Sasaki,T.;Ogawa,M.PhotoinducedStructuralings.ExpetOpin.DrugDeliv.2009,6,643−655.ChangesofCationicAzoDyesConfinedinaTwoDimensional(36)Yamaguchi,T.;Ogawa,M.PhotochromismofaSpiropyraninNanospacebyTwoDifferentMechanisms.RSCAdv.2017,7,8077−thePresenceofaSyntheticHectorite.Chem.Lett.2018,47,189−191.8081.(37)Julia-López,A.;Hernando,J.;Ruiz-Molina,D.;González-̀(56)Kobayashi,Y.;Abe,J.Real-TimeDynamicHologramofa3DMonje,P.;Sedó,J.;Roscini,C.Temperature-ControlledSwitchableObjectwithFastPhotochromicMolecules.Adv.Opt.Mater.2016,4,PhotochromisminSolidMaterials.Angew.Chem.,Int.Ed.2016,55,1354−1357.15044−15048.(57)Ogawa,M.MesoporousSilicaLayer:Preparationand(38)Julia-López,A.;Ruiz-Molina,D.;Hernando,J.;Roscini,C.̀Opportunity.Chem.Rec.2017,17,217−232.SolidMaterialswithTunableReversePhotochromism.ACSAppl.(58)Yamaguchi,T.;Oh,J.-M.;Ogawa,M.PhotofunctionsofDye-Mater.Interfaces2019,11,11884−11892.ClayHybrids:RecentDevelopments.InStructureandBonding;(39)Rochon,P.;Batalla,E.;Natansohn,A.OpticallyInducedMartínez-Martínez,V.,LópezArbeloa,F.,Eds.;SpringerBerlinSurfaceGratingsonAzoaromaticPolymerFilms.Appl.Phys.Lett.Heidelberg:Berlin,Heidelberg,2020;pp251−320.1995,66,136.(59)Seki,T.;Ichimura,K.ThermalIsomerizationBehaviorsofa(40)Ubukata,T.;Nakayama,M.;Sonoda,T.;Yokoyama,Y.;Kihara,SpiropyraninBilayersImmobilizedwithaLinearPolymerandaH.HighlySensitiveFormationofStableSurfaceReliefStructuresinSmectiticClay.Macromolecules1990,23,31−35.BisanthraceneFilmswithSpatiallyPatternedPhotopolymerization.(60)Takagi,K.;Kurematsu,T.;Sawaki,Y.IntercalationandACSAppl.Mater.Interfaces2016,8,21974−21978.PhotochromismofSpiropyransonClayInterlayers.J.Chem.Soc.,(41)Casades,I.;Álvaro,M.;García,H.;NarayanaPillai,M.PerkinTrans.21991,10,1517.ModifiedMesoporousMCM-41asHostsforPhotochromic(61)Tomioka,H.;Itoh,T.PhotochromismofSpiropyransinOrganizedMolecularAssemblies.FormationofJ-andH-AggregatesSpirobenzopyrans.Photochem.Photobiol.Sci.2002,1,219−223.ofPhotomerocyaninesinBilayers-ClayMatrices.J.Chem.Soc.,Chem.(42)Allouche,J.;LeBeulze,A.;Dupin,J.-C.;Ledeuil,J.-B.;Blanc,Commun.1991,7,532−533.S.;Gonbeau,D.HybridSpiropyran−SilicaNanoparticleswithaCore-(62)Singh,B.;Maity,A.;Polshettiwar,V.SynthesisofHighSurfaceShellStructure:Sol−GelSynthesisandPhotochromicProperties.J.Mater.Chem.2010,20,9370−9378.AreaCarbonNanosphereswithWrinkledCagesandTheirCO2CaptureStudies.ChemistrySelect2018,3,10684−10688.(43)Schomburg,C.;Wark,M.;Rohlfing,Y.;Schulz-Ekloff,G.;(63)Choi,M.;Kleitz,F.;Liu,D.;Lee,H.Y.;Ahn,W.-S.;Ryoo,R.Wöhrle,D.PhotochromismofSpiropyraninMolecularSieveVoids:ControlledPolymerizationinMesoporousSilicatowardtheDesignofEffectsofHost-GuestInteractiononIsomerStatus,SwitchingOrganic-InorganicCompositeNanoporousMaterials.J.Am.Chem.StabilityandReversibility.J.Mater.Chem.2001,11,2014−2021.Soc.2005,127,1924−1932.(44)Yamaguchi,T.;Leelaphattharaphan,N.;Shin,H.;Ogawa,M.(64)Ling,X.Y.;Phang,I.Y.;Acikgoz,C.;Yilmaz,M.D.;AccelerationofPhotochromismandNegativePhotochromismbytheHempenius,M.A.;Vancso,G.J.;Huskens,J.JanusParticleswithInteractionswithMesoporousSilicas.Photochem.Photobiol.Sci.2019,ControllablePatchinessandTheirChemicalFunctionalizationand18,1742−1749.SupramolecularAssembly.Angew.Chem.,Int.Ed.2009,48,7677−(45)Phuekphong,A.;Imwiset,K.;Ogawa,M.DesigningNano-7682.architectureforEnvironmentalRemediationBasedontheClay(65)Binks,B.P.;Fletcher,P.D.I.ParticlesAdsorbedattheOil-MineralsasBuildingBlock.J.Hazard.Mater.2020,399,122888.WaterInterface:ATheoreticalComparisonbetweenSpheresof(46)Yamaguchi,T.;Ogawa,M.HydrophilicInternalPoreandUniformWettabilityand“Janus”Particles.Langmuir2001,17,4708−HydrophobicParticleSurfaceofOrganicallyModifiedMesoporous4710.SilicaParticletoHostPhotochromicMolecules.Chem.Lett.2018,48,170−172.(47)Ogawa,M.;Kuroda,K.PhotofunctionsofIntercalationCompounds.Chem.Rev.1995,95,399−438.(48)Ogawa,M.;Aono,T.;Kuroda,K.;Kato,C.PhotophysicalProbeStudyofAlkylammonium-Montmorillonites.Langmuir1993,9,1529−1533.(49)Ogawa,M.;Wada,T.;Kuroda,K.IntercalationofPyreneintoAlkylammonium-ExchangedSwellingLayeredSilicates:TheEffectsoftheArrangementsoftheInterlayerAlkylammoniumIonsontheStatesofAdsorbates.Langmuir1995,11,4598−4600.(50)Imwiset,K.J.;Ogawa,M.CharacteristicsofFlexibleSupramolecularAssemblyofDioleyldimethylammoniumIonCon-3708https://doi.org/10.1021/acs.langmuir.1c00150Langmuir2021,37,3702−3708

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭