风电场电气一次系统设计.doc

风电场电气一次系统设计.doc

ID:57262972

大小:18.50 KB

页数:4页

时间:2020-08-07

风电场电气一次系统设计.doc_第1页
风电场电气一次系统设计.doc_第2页
风电场电气一次系统设计.doc_第3页
风电场电气一次系统设计.doc_第4页
资源描述:

《风电场电气一次系统设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、风电场电气一次系统设计【摘要】本文论述了风电场电气一次设计,并着重介绍兆瓦级风电机组电气一次部分的组成,包括接入系统、电力电缆和主要电气设备的选型、过电压和接地保护系统、照明系统等。【关键词】双馈异步型风力发电机组;短路电流;等电位搭接1.概述风电场电气部分主要由一次部分(系统)和二次部分(系统)组成。电气一次可分为4个主要部分:风电机组、集电线路、升压变电站、所用电系统。电气二次分为风力发电机组计算机监控系统和变电站计算机监控系统。本文着重以某风电场风电机组电气一次设计为例,结合电气主接线等内容对风电场电气一次从理论到技术进行了简要阐述。2.电气一次系统设计2.1接入系统本工程风电场总装

2、机容量为40MW,安装单机容量为2MWD110的双馈异步型风力发电机组20台。本期风电场内建设110kV升压变电站1座,配置一台40MVA主变和两台50MVA主变及一回110kV出线,本期机组通过35kV集电线路接入风电场升压站35kV侧。2.2电气主接线1.风电场电气主接线机组出口电压为0.69KV,风电机组与箱式变的接线方式采用一机一变的单元接线方式,配套选用20台箱式变,其低压侧电压与机组匹配选用0.69KV,高压侧35kV。箱式变就近布置在距离风力发电机组塔基约25米的位置。2.升压站电气主接线风电场建设承载着向系统供电的任务,根据风电场最终规划方案,建设一座110kV升压站,建成

3、一台40MVA主变压器,经GIS接入110kV母线,并通过110kV线路接入220kV变电站。升压站低压侧为风电场电源进线,电压等级35kV。2.3主要电气设备选择1.短路电流短路电流计算是电气设备选型、导体选择、继电保护整定和校核的基础,其计算结果直接影响到电气系统的安全可靠性和工程造价,将风电场作为独立系统进行短路电流的分析计算,通过对整个电气系统中的组成元件进行合理的等值、简化,在不改变其主要电气特性的前提下,将复杂的电气网络简化成为可供计算的电路模型。由于短路电流其实是指电力系统中相与相或相与中性点之间经过电弧或小阻抗拉通的电路,这时流过导线的电流将比正常情况下流过导线的电流将增大

4、几十倍。对于箱式变低压侧,尽管电网低压侧变压器的阻抗比电力系统高压侧的阻抗大很多,当低压电网发生短路故障时变压器一次端电压下降幅度不大,如果阻抗不大时甚至可以忽略高压电网的阻抗影响,但是对风电机组来说,短路电流误差过大会影响短路保护装置的灵敏度及设备选型,尤其是电力电缆阻抗较大时,必须考虑系统电抗和电缆的阻抗。2.箱式变选择风电机组之间选址相对较远,为降低发电机回路的电能损耗、减少发电机回路动力电缆的长度和数量,根据接入变压器的风电机组的容量及一定超负荷的余量,同时,也需综合考虑风力发电机组的抗短路电流的能力,降低机端的短路电流,选择的箱式变压器的短路阻抗不宜过小。变压器型号为S11-25

5、00KVA/35KV,35+_2*2.5%/0.69KV,Dyn11,ud=6.5%。3.断路器选择断路器的选定与线路最大短路电流有直接关系,既要满足技术要求,同时也要综合考虑其经济性。技术要求除满足器件本身参数(如电压、电流、短路分断能力、耐受电流、动稳定电流、机械载荷、分合闸时间及绝缘水平等)外还需要充分考虑环境因素(如环境温度、相对湿度、海拔高度、污秽等级)。对于箱式变低压侧,断路器的保护直接关系整个风电机组的安全稳定运行。低压断路器必须能过接收外部跳闸信号,对低压侧线路进行保护,根据P=2000KW,U=0.69KV及现场运行环境要求,低压断路器其额定电流值In取1.5倍风电机组出

6、口额定电流I,I=P/1.732U=1674A,In=1.5I=2511A,选E3S2500R2500型4段式保护(过负荷保护、短延时过流保护、瞬时过流保护、接地故障保护)断路器,额定技术参数为:Ue=0.69KV,Iu=2500A,额定极限短路分断电流为Icu=100KA,额定短路接通能力Icmmax=165KA,短时耐受电流(及时间)Icw=75KA(1S)/65KA(3S),固有分闸时间t=0.08s,满足设计需求。2.4电力电缆所有的工程的电气设计系统中,电线电缆是不可或缺的,合理的选择电力电缆及其敷设方式不但能提高电气系统安全性,减少事故隐患,也可以降低工程造价成本,使整个系统更

7、加优化。实际敷设环境下单根电缆能够承受的载流量,与很多因素有关,不同敷设方式下载流量不尽相同。因此电缆载流量根据电缆的运行环境和敷设方式,需要对其进行修正。对于单根电缆:电缆在温度下的载流量应为标准温度时电缆载流量乘以温度修正系数K1,当环境温度超过25℃时再打9折。K1=[(T1-Tn)/(T1-T0)]½T1:导体允许运行最高温度T0:导体运行标准温度,取25℃Tn:导体运行环境实际温度。根据目前所选型

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。