实验四 金属材料的轴向拉伸实验

实验四 金属材料的轴向拉伸实验

ID:10255336

大小:133.00 KB

页数:4页

时间:2018-06-13

实验四 金属材料的轴向拉伸实验_第1页
实验四 金属材料的轴向拉伸实验_第2页
实验四 金属材料的轴向拉伸实验_第3页
实验四 金属材料的轴向拉伸实验_第4页
资源描述:

《实验四 金属材料的轴向拉伸实验》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实验四:低碳钢轴向拉伸实验一、实验目的1.测定低碳钢的强度性能指标:抗拉强度Rm(σb)。2.测定低碳钢的塑性性能指标:断后伸长率A11.3(δ10)和断面收缩率Z(ψ)。3.观察低碳钢的力学性能、拉伸过程、断口特征及破坏现象。  4. 学习电子拉力试验机的使用方法。 注:括号内为GB/T228-2002《金属材料室温拉伸试验方法》发布前的旧标准引用符号。二、实验原理1.低碳钢的拉伸低碳钢是指含碳量在0.3%以下的碳素钢。这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。在下图中可以看到

2、低碳钢拉伸过程中的四个阶段(弹性阶段、屈服阶段、强化阶段和局部变形阶段)。屈服阶段反映在F-ΔL曲线图上为一水平波动线。上屈服力FeH是试样发生屈服而载荷首次下降前的最大载荷。下屈服力FeL是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大轴向力Fm是试样在屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算:拉伸图上屈服强度:下屈服强度:应力-应变F-ΔL曲线与试样的尺寸有关。为了消除试样尺寸的影响,把轴向力F除以试样横截面的原始面积A0就得到了名义应力,

3、也叫工程应力,用σ表示。同样,试样在标距段的伸长ΔL除以试样的原始标距L0得到名义应变,也叫工程应变,用ε表示。σ-ε曲线与F-ΔL曲线形状相似,但消除了儿何尺寸的影响,因此代表了材料本质属性,即材料的本构关系。典型低碳钢的拉伸σ-ε曲线,如上图所示,可明显分为四个阶段:(1)弹性阶段:在此阶段试样的变形是弹性的,如果在这一阶段终止拉伸并卸载,试样仍恢复到原先的尺寸,试验曲线将沿着拉伸曲线回到初始点,表明试样没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即,式中比

4、例系数E代表直线的斜率,称为材料的弹性模量,其常用单位为GPa。它是代表材料发生弹性变形的主要性能参数。E的大小反映材料抵抗弹性变形的一种能力,代表了材料的刚度。此外,材料在发生杆的轴向伸长的同时还发生横向收缩。横向应变与纵向应变之比的绝对值μ称为材料的泊松比。它是代表材料弹性变形的另一个性能参数。(2)屈服阶段:在超过弹性阶段后出现明显的屈服过程,即曲线沿一水平段上下波动,即应力增加很少,变形快速增加。这表明材料在此载荷作用下,宏观上表现为暂时丧失抵抗继续变形的能力,微观上表现为材料内部结构发生急

5、剧变化。从微观结构解释这一现象,是由于构成金属晶体材料结构晶格间的位错,在外力作用下发生有规律的移动造成的。如果试样表面足够光滑、材料杂质含量少,可以清楚地看出试样表面有45o方向的滑移线。根据GB/T228-2002标准规定,试样发生屈服而力首次下降前的最大应力称为上屈服强度,记为“ReH”;在屈服期间,不计初始瞬时效应时的最低应力称为下屈服强度,记为“ReL”,若试样发生屈服而力首次下降的最小应力是屈服期间的最小应力时,该最小应力称为初始瞬时效应,不作为下屈服强度。通常把试验测定的下屈服强度Re

6、L作为材料的屈服极限σs,σs是材料开始进入塑性的标志。不同的塑性材料其屈服阶段的曲线类型有所不同,其屈服强度按GB/T228-2002规定确定。结构、零件的外加载荷一旦超过这个应力,就可以认为这一结构或零件会因为过量变形而失效。因此,强度设计中常以屈服极限σs作为确定许可应力的基础。由于材料在这一阶段已经发生过量变形,必然残留不可恢复的变形(塑性变形),因此,从屈服阶段开始,材料的变形就包含弹性和塑性两部分。(3)强化阶段:屈服阶段结束后,σ-ε曲线又出现上升现象,说明材料恢复了对继续变形的抵抗能

7、力,材料若要继续变形必须施加足够的载荷。如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留。强化阶段的卸载路径与弹性阶段平行。卸载后若重新加载,材料的弹性阶段线将加长、屈服强度明显提高,塑性将降低。这种现象称作应变强化或冷作硬化。冷作硬化是金属材料极为宝贵的性质之一。塑性变形与应变强化二者结合,是工厂强化金属的重要手段。例如:喷丸、挤压,冷拔等工艺,就是利用材料的冷作硬化来提高材料的强度。强化阶段的塑性变形是沿轴向均匀分布的。随塑性变形的增长,试样表面的滑移线亦愈趋明显。σ-ε曲线的应力峰

8、值Rm为材料的强度极限σb。对低碳钢来说σb是材料均匀塑性变形的最大抵抗能力,也是材料进入颈缩阶段的标志。(4)颈缩阶段:应力到达强度极限后,开始在试样最薄弱处出现局部变形,从而导致试样局部截面急剧颈缩,承载面积迅速减少,试样承受的载荷很快下降,直至断裂。断裂时,试样的弹性变形消失,塑性变形则遗留在断裂的试样上。塑性材料和脆性材料的拉伸曲线存在很大差异。低碳钢和铸铁是工程材料中最具典型意义的两种材料,前者为塑性材料,后者为脆性材料。观察它们在拉伸过程中的变形和破坏特征

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。