用于天文观测的ccd相机系统的研究

用于天文观测的ccd相机系统的研究

ID:10640225

大小:56.50 KB

页数:4页

时间:2018-07-07

用于天文观测的ccd相机系统的研究_第1页
用于天文观测的ccd相机系统的研究_第2页
用于天文观测的ccd相机系统的研究_第3页
用于天文观测的ccd相机系统的研究_第4页
资源描述:

《用于天文观测的ccd相机系统的研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、用于天文观测的CCD相机系统的研究

2、第1关键词:CCDCPLD相关双采样控制系统串口通信引言CCD通常分为3个等级;商业级、工程级和科学级。3个级别的要求一级比一级高。衡量CCD的性能主要从以下几个方面:量子效率和响应度、噪声等效功率和探测度,即动态范围和电荷转移效率等。科学级CCD以其高光子转换效率、宽频谱响应、良好线性度和宽动态范围广泛用于天文观测,已成为望远镜测必不可少的后端设备。国内各天文台望远镜终端都是从外围引起的成套设备,使用和维护很不方便,并且价格昂贵,因此国内迫切需要发展自己的CCD技术。紫金山天文台红外实验室对这一课题进行了深入研究,广泛调研,认真选取,从芯片开始

3、一直到系统的软硬件设计,搭建了自己的CDD相机系统。1系统设计CCD芯片决定相机系统的性能,为此我们广泛调研,最后选定柯达公司的KAF-0401LE芯片。它动态范围大(70dB),电荷转移效率高(0.99999),波长响应范围宽(0.4μm~1.0μm),低暗电流(在25℃条件下,7pA/cm2),量子效率为35%,并且具有抗饱和性,能够满足科学观测的要求,既可用于光谱分析,又可用于成像观测。系统设计的重点是解决CCD芯片的驱动和系统噪声的问题。我们的设计如下:采用柯达公司的KAF-0401LE芯片作为探测器,Ateml公司的带闪存Flash的89C51作下位机控制器,复杂可编程逻

4、辑作(CPLD)作时序发生和地址译码,采用相关双采样技术降低噪声,自带采样保持的12位A/D转换顺AD1674进行模数转换,扩展8片128Kbit(628128)的RAM作1为帧图像暂存空间,通过RS232与计算机串口通信,接受计算机的控制。整个系统由图1所示几个功能部件组成。1.1时序信号发生电路KAF-0401LE芯片的时序要求:积分期间φV1、φV2保持低电平;行转移期间φH1保持高电平,φH2保持低电平。每行开始φV1的第2个脉冲下降沿后,要有1个行转移建立时间tφHs,读完行后需延迟1个像素时间te才开始下一行φV1脉冲;同样,φV1第2分脉冲下降沿后,开始下一行转移,如

5、此直到读完1帧。复杂可编程逻辑器件(CPLD)以其高度集成、灵活、方便的特点,在电路设计中运用越来越广泛。Altera公司的复杂可编程逻辑器件EPM712SLC84-15具有2500个可用逻辑门,128个宏单元,8个逻辑块,最大时钟可达147.1MHz,带有68个可供用户使用的I/O引脚,PLCC封装,可通过JTAG接口实现在线编程。我们选用EMP7128SLC84-15,通过硬件描述语言(VHDL)在集成开发环境MAXPLUSII下完成逻辑设计;编译后,通过JTAG接口下载到电路板上的EPM7128SLC84-15中,实现了KAF-0401LE芯片的时序要求。MAXPLUSII虽

6、然有很丰富的元件库,但并不是针对某一应用而开发的,具有通用性,调用它固有的元件库可能造成资源的浪费,没有必要。因此我们按照需求,编制了自己的元件库,然后在程序中作为元件调用。在本系统中,仅用1片EPM7128LC84-15就实现了CCD的时序要求、暂存RAM和接口扩展芯片8255的片选和地址译码,既简化耻电路的硬件设计,提高了系统可靠性,又降低了成本。交流时序条件要求如表1所列。表1描述符号最小值正常值最大值φH1、φH2时钟频率/MHzfH 1015φV1、φV2时钟频率/kHzfV 100125周期/nste67100 φH1、φH2建立时间/μstφHS0.51 φV1、φV

7、2脉冲/μstφv45 复位时钟脉宽/nstφR1020 读出时间/mstreadout3450 每行读出时间/μstline65.895.6 1.2双采取、模拟放大电路及A/D变换电路我们采用能够满足高频要求的放大器LF356N设计双采样和模拟放大电路。根据CCD的动态范围选用自带采样保持的12位A/D变换器AD1674作模数转换。双采样原理如图2所示。RSL是CCD复位电平,光信号相当于SGL与RSL的差值,理论上只要分别在RSL和SGL处各采样一次,然后相减便得到信号的值。然而,实际上RSL和SGL并不是理想的水平线,而是存在着低频起伏噪声。为了降低噪声的影响,通常的做法是,

8、分别在RSL和SGL处多次采样求平均,这样对硬件和数据处理软件的要求都很高。我们这里采用了积分型相关双采样技术,如图3所示,CCD信号分别经过同相和反相放大器连到模拟开关输入端。模拟开关S1打开时,RSL通过电容积分;s2打开时,SGL信号经电容积分;s3打开输入端接地,信号保持不变;s4为复位开关。积分放大器的输入、输出关系如下:图2中的积分输出是相关双采样的输出波形图。采样保持后通过A/D进行模数转换,经8255口存在板上的RAM中。1.3电压偏置电路CCD驱动信

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。