红外光谱与有机化合物结构

红外光谱与有机化合物结构

ID:11454479

大小:2.15 MB

页数:108页

时间:2018-07-12

红外光谱与有机化合物结构_第1页
红外光谱与有机化合物结构_第2页
红外光谱与有机化合物结构_第3页
红外光谱与有机化合物结构_第4页
红外光谱与有机化合物结构_第5页
资源描述:

《红外光谱与有机化合物结构》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一、概述二、红外光谱与有机化合物结构三、分子中基团的基本振动形式四、影响峰位变化的因素第六章红外分光光度法第一节红外光谱分析基本原理分子中基团的振动和转动能级跃迁产生:振-转光谱一、概述分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。红外吸收光谱是一种分子吸收光谱。一、红外光区的划分红外光谱在可见光区和微波光区之间,波长范围约为0.75-1000µm,根据仪器技术和应用不同,习惯上又将红

2、外光区分为三个区:近红外光区(0.75-2.5µm)中红外光区(2.5-25µm)远红外光区(25-1000µm)。近红外光区的吸收带(0.75-2.5µm)主要是由低能电子跃迁、含氢原子团(如O-H、N-H、C-H)伸缩振动的倍频吸收产生。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。中红外光区吸收带(2.5-25µm)是绝大多数有机化合物和无机离子的基频吸收带(由基态振动能级(=0)跃迁至第一振动激发态(=1)时,所产生的吸收峰

3、称为基频峰)。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。远红外光区吸收带(25-1000µm)是由气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合

4、物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。红外吸收光谱一般用T-曲线或T-(波数)曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长(单位为µm),或(波数)(单位为cm-1)。波长与波数之间的关系为:(波数)/cm-1=104/(/µm)中红外区的波数范围是4000-400cm-1。二、红外光谱法的特点紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中

5、伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。红外吸收带的波数位置、波峰的数目以及吸收谱带的强度反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分

6、析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且是鉴定化合物和测定分子结构的用效方法之一。红外光谱图:纵坐标为吸收强度,横坐标为波长λ(μm)和波数1/λ单位:cm-1可以用峰数,峰位,峰形,峰强来描述。应用:有机化合物的结构解析。定性:基团的特征吸收频率;定量:特征峰的强度;二、红外光谱与有机化合物结构满足两个条件:1.辐射应具有能满足物质产生振动跃迁所需的能量;2.辐射与物质间有相互偶合作用。对

7、称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2等。非对称分子:有偶极矩,红外活性。偶极子在交变电场中的作用示意图(一)红外光谱产生的条件一分子的振动能级(量子化):E振=(V+1/2)hV:化学键的振动频率;:振动量子数。1.双原子分子的简谐振动及其频率化学键的振动类似于连接两个小球的弹簧(二)分子振动方程式任意两个相邻的能级间的能量差为:K化学键的力常数,与键能和键长有关,为双原子的折合质量=m1m2/(m1+m2)发生振动能级跃迁需要能量的大小取决于键两端原子的折合质

8、量和键的力常数,即取决于分子的结构特征。分子振动方程式表某些键的伸缩力常数(毫达因/埃)键类型—CC—>—C=C—>—C—C—力常数15179.59.94.55.6峰位4.5m6.0m7.0m化学键键强越强(即键的力常数K越大)原子折合质量越小,化学键的振动频率越大,吸收峰将出现在高波数区。例题:由表中查知C=C键的K=9.59.9,令其为9.6,计算波数值正己烯中C=C键伸缩振动频率实测值为1652cm-1一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。