粉末冶金烧结技术的研究进展

粉末冶金烧结技术的研究进展

ID:19597793

大小:37.00 KB

页数:8页

时间:2018-10-03

粉末冶金烧结技术的研究进展_第1页
粉末冶金烧结技术的研究进展_第2页
粉末冶金烧结技术的研究进展_第3页
粉末冶金烧结技术的研究进展_第4页
粉末冶金烧结技术的研究进展_第5页
资源描述:

《粉末冶金烧结技术的研究进展》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、粉末冶金烧结技术的研究进展摘要:烧结作为粉末冶金最重要的一个工艺环节一直以来是人们研究的重点,介绍粉末冶金烧结技术的研究进展,以体现烧结在粉末冶金中的重要地位,推进新材料制备技术的发展。关键词:粉末冶金烧结新技术中图分类号:TF124文献标识码:B文章编号:1671—3621(2004)04—0106—0108现代科学技术的不断发展牵引着工程材料向着复合化、高性能化、功能化、结构功能一体化和智能化方向发展,各行业对材料的性能提出了越来越高的要求。在不断开发新材料的同时,人们也在不断地寻求新型材料的制备方法,小型化、自动化、精密化、

2、省能源、无污染的材料制备方法成为人们追求的目标。现代粉末冶金技术由于其少切屑,无切屑及近净成形的工艺特点,在新材料的制备中发挥了越来越大的作用。它的低耗、节能、节材,易控制产品孔隙度,易实现金属-非金属复合,属-高分子复合等特点使其成为制取各种高性能结构材料,特种功能材料和极限条件下工作材料的有效途径,受到了人们的广泛关注。从现代复合材料技术的理论来看,粉末冶金复合技术从微观上改变了单一材料的性能,依靠扩散流动使物质发生迁移,同时原材料的晶体组织发生变化,最终“优育”出高性能的复合材料。而烧结作为粉末冶金生产过程中最重要的工序,8

3、一直以来是人们研究的重点,各种促进烧结的方法不断涌现,对改进烧结工艺,提高粉末冶金制品的力学性能,降低物质与能源消耗,起了积极的作用。本文简单介绍近几年出现的几种烧结新技术,以期反映粉末冶金在高技术领域所起的重要作用。1,放电等离子体烧结(SparkPlasmaSintering,SPS)放电等离子体烧结(SPS)也称作等离子体活化烧结(PlasmaActivatedSintering,PAS)或脉冲电流热压烧结(PulseCurrentPressureSintering),是自90年代以来国外开始研究的一种快速烧结新工艺。由于它

4、融等离子体活化,热压,电阻加热为一体,具有烧结时间短,温度控制准确,易自动化,烧结样品颗粒均匀,致密度高等优点,仅在几分钟之内就使烧结产品的相对理论密度接近100%,而且能抑制样品颗粒的长大,提高材料的各种性能,因而在材料处理过程中充分显示了优越性。将瞬间、断续、高能脉冲电流通人装有粉末的模具上,在粉末颗粒间即可产生等离子放电,由于等离子体是一种高活性离子化的电导气体,因此,等离子体能迅速消除粉末颗粒表面吸附的杂质和气体,并加快物质高速度的扩散和迁移,导致粉末的净化、活化、均化等效应。第三代SPS设备采用的是开关直流脉冲电源,在5

5、0Hz供电电源下,发生一个脉冲的时间为312ms,由于强脉冲电流加在粉末颗粒间,即可产生诸多有利于快速烧结的效应。首先,由于脉冲放电产生的放电冲击波以及电子,离子在电场中反方向的高速流动,可使粉末吸附的气体逸散,粉末表面的起始氧化膜在一定程度上可被击穿,8使粉末得以净化、活化;其次,由于脉冲是瞬间、断续、高频率发生,在粉末颗粒未接触部位产生的放电热,以及粉末颗粒接触部位产生的焦耳热,都大大促进了粉末颗粒原子的扩散,其扩散系数比通常热压条件下的要大得多,而达到粉末烧结的快速化;最后,开关快速脉冲的加入,无论是粉末内的放电部位还是产生

6、焦耳热部位,都会快速移动,使粉末的烧结能够均匀化。2,微波烧结(MicrowaveSintering)微波烧结是一种利用微波加热来对材料进行烧结的方法。微波烧结技术是利用材料吸收微波能转化为内部分子的动能和热能,使得材料整体均匀加热至一定温度而实现致密化烧结的一种方法,是快速制备高质量的新材料和制备具有新的性能的传统材料的重要技术手段。同常规烧结方法相比,微波烧结具有快速加热,烧结温度低,细化材料组织,改进材料性能,安全无污染以及高效节能等优点,因而被称为新一代烧结方法。与传统的烧结工艺生产的工件相比,用微波烧结制成的工件具有较高

7、的密度、硬度和强韧性。短时间烧结产生均匀的细晶粒显微结构,内部孔隙很少,孔隙形状比传统烧结的圆,因而具有更好的延展性和韧性。微波加热能使工件加热均匀,加热速度可以高达1500℃/分钟,对某些材料甚至可以以很少的输入能量实现2000℃以上的高温。由于微波对大多数粉末陶瓷材料有很大的穿透性,可以均匀地加热工件,减小高温烧结过程中的温度梯度,从而降低由膨胀不均匀产生的材料变形,8使迅速升温成为可能,而且在高温下停留的时间可以大幅度缩短,抑制晶粒的长大,改善材料的物理,力学性能。微波烧结始于上世纪70年代,到目前为止,许多氧化物和非氧化物

8、,从低损耗陶瓷(如Y—A1203)到高损耗陶瓷(如SiC、TiB2和BC)等的微波烧结均见报道。3,电场活化烧结(Fieldactivatedsinteringtech—nique,FAST)电场活化烧结技术在烧结时要施加电场。它有许多优点:经电场

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。