磁共振成像原理

磁共振成像原理

ID:20614585

大小:209.00 KB

页数:8页

时间:2018-10-14

磁共振成像原理_第1页
磁共振成像原理_第2页
磁共振成像原理_第3页
磁共振成像原理_第4页
磁共振成像原理_第5页
资源描述:

《磁共振成像原理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、一、磁共振成像基本原理       1.磁共振现象微观领域中的核子都有自旋的特性。核子的自旋产生小磁矩,类似于小磁棒。质子数或中子数至少有一个为奇教的大量原子核可在静磁场中体现出宏观磁化来,其磁化矢量与静磁场同向。而每单个原子核在静磁场中做着不停的进动运动(一方面不断自旋,同时以静磁场为轴做圆周运动),进动频率(precessionfrequency)(即质子每秒进动的次数)为(00一/Bo,7为原子核的旋磁比(对于每一种原子核,7是一个常数且各不相同,如氢质子7值为42.5MHz/T),Bo为静磁场的场强大小。人体含有占比

2、重70%以上的水,又由于氢质子磁矩不为零,这些水中的氢质子是磁共振信号的主要来源,其余信号来自脂肪、蛋白质和其他化合物中的氢质子。对静磁场中的质子群沿着垂直于静磁场的方向施加某一特定频率的电磁波——其频率在声波范围内,故称为射频(radiofrequency,RF)-原来的宏观磁化就会以射频场为轴发生偏转(章动),其偏转角度取决于射频场的施加时间、射频强度和射频波形。当然,一个关键条件是:射频的频率必须与静磁场中的质子的进动频率一致。宏观磁化发生章动的实质是质子群中一部分质子吸收了射频的能量,使自己从低能级跃迁到了高能级。这

3、种现象即称为原子核的磁共振现象。如果将此时的宏观磁化进行二维分解,会发现射频激励的效果是使沿静磁场方向的磁化矢量(纵向磁化)减小,而垂直于静磁场方向的磁化(横向磁化)增大了。RF脉冲有使进动的质子同步化的效应,质子同一时间指向同一方向,处于所谓“同相”,其磁化矢量在该方向上叠加起来,即横向磁化增大。使质子进动角度增大至90。的RF脉冲称为90。脉冲,此时纵向磁化矢量消失,只有横向磁化矢量。同样还有其他角度的RF脉冲。质子的进动角度受RF脉冲强度和脉冲持续时间影响,强度越强、持续时间越长,质子的进动角度越大,且强RF脉冲比弱R

4、F脉冲引起履子进动角度改变得要快。       2.弛豫及弛豫时间短暂的射频激励(一般为几十微秒)以后,宏观磁化要恢复到原始的静态。从激励态恢复到静态要经历一个与激励过程相反的两个分过程,一个是横向磁化逐渐减小的过程(即为横向弛豫过程,T2过程)(图6-1);另一个是纵向磁化逐渐增大的过程(纵向弛豫过程,T1过程)(图6-2)。纵向弛豫过程的本质是激励过程吸收了射频能量的那些质子释放能量返回到基态的过程。能量释放的有效程度与质子所在分子大小有关,分子过大或很小,能量释放将越慢,弛豫需要的时间就越长。如水中的质子,0.5T场强

5、下弛豫时间>4000毫秒;分子结构处于中等大小,能量释放就很快,T1就短,如脂肪内的质子,0.5T场强下弛豫时间仅为260毫秒左右。横向弛豫过程的本质是激励过程使质子进动相位的一致性逐渐散相(即逐渐失去相位一致性)的过程,其散相的有效程度与质子所处的周围分子结构的均匀性有关,分子结构越均匀,散相效果越差,横向磁化减小的越慢,需要的横向弛豫时间(T2)就越长;反之,分子结构越不均匀,散相效果越妤,横向磁化减小越快,T2就越短。       3.自由感应衰减磁共振成像设备中,接收信号用的线圈和发射用的线圈可以是同一线圈,也可以是

6、方向相互正交的两个线圈,线圈平面与主磁场Bo平行,其工作频率都需要尽量接近Larmor频率。线圈发射RF脉冲对组织进行激励,在停止发射RF脉冲后进行接收。RF脉冲停止后组织出现弛豫过程,磁化矢量只受主磁场Bo的作用时,这部分质子的进动即自由进动,因与主磁场方向一致,所以无法测量,而横向磁化矢量垂直并围绕主磁场方向旋进,按电磁感应定律(即法拉第定律),横向磁化矢量的变化,能使位于被检体周围的接收线圈产生随时间变化的感应电流,其大小与横向磁化矢量成正比,这个感应电流经放大即为MR信号。由于弛豫过程横向磁化矢量的幅度按指数方式不断

7、衰减,决定了感应电流为随时间周期性不断衰减的振荡电流,因而它是自由进动感应产生的,被称为自由感应衰减(freeinductiondecay,FID)。90。脉冲后,由于受纵向弛豫(T1)和横向弛豫(T2)的影响,磁共振信号以指数曲线形式衰减,如图6-3所示,其幅度随时间指数式衰减的速度就是横向弛豫速率(l/T2)。图6-3自由感应哀减信号及其产生       4.空间定位磁共振信号的三维空间定位是利用施加三个相互垂直的可控的线性梯度磁场来实现的。根据定位作用的不同,三个梯度场分别称为选层梯度场(Gs)、频率编码梯度场(Gf)

8、和相位编码梯度场(G。);三者在使用时是等效的,可以互换,而且可以使用两个梯度场的线性组合来实现某一定位功能,从而实现磁共振的任意截面断层成像。(1)选层:沿静磁场方向叠加一线性梯度场Gs可以选择发生磁共振现象的人体断层层面,RF的频带宽度与梯度场强度共同决定层厚(图6-4)。层厚与RF带

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。