含参数的一元二次不等式的解法以与含参不等式恒成立问题(专题)

含参数的一元二次不等式的解法以与含参不等式恒成立问题(专题)

ID:21231597

大小:597.50 KB

页数:8页

时间:2018-10-20

含参数的一元二次不等式的解法以与含参不等式恒成立问题(专题)_第1页
含参数的一元二次不等式的解法以与含参不等式恒成立问题(专题)_第2页
含参数的一元二次不等式的解法以与含参不等式恒成立问题(专题)_第3页
含参数的一元二次不等式的解法以与含参不等式恒成立问题(专题)_第4页
含参数的一元二次不等式的解法以与含参不等式恒成立问题(专题)_第5页
资源描述:

《含参数的一元二次不等式的解法以与含参不等式恒成立问题(专题)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、word资料下载可编辑含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按项的系数的符号分类,即;例1解不等式:分析:本题二次项系数含有参数,,故只需对二次项系数进行分类讨论。解:∵解得方程两根∴当时,解集为当时,不等式为,解集为当时,解集为例2解不等式分析因为,,所以我们只要讨论二次项系数的正负。解当时,解集为;当时,解集为二、按判别式的符号分类,即;例3解不等式分析本题中由于的系数大于0,故只需考虑与根的情况。解:∵∴

2、当即时,解集为;专业技术资料word资料下载可编辑当即Δ=0时,解集为;当或即,此时两根分别为,,显然,∴不等式的解集为例4解不等式解因所以当,即时,解集为;当,即时,解集为;当,即时,解集为R。三、按方程的根的大小来分类,即;例5解不等式分析:此不等式可以分解为:,故对应的方程必有两解。本题只需讨论两根的大小即可。解:原不等式可化为:,令,可得:∴当或时,,故原不等式的解集为;当或时,,可得其解集为;当或时,,解集为。例6解不等式,分析此不等式,又不等式可分解为专业技术资料word资料下载可编辑,故只需比较两根

3、与的大小.解原不等式可化为:,对应方程的两根为,当时,即,解集为;当时,即,解集为含参不等式恒成立问题的求解策略“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。一、判别式法若所求问题可转化为二次不等式,则

4、可考虑应用判别式法解题。一般地,对于二次函数,有1)对恒成立;2)对恒成立例1:若不等式的解集是R,求m的范围。解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。(1)当m-1=0时,元不等式化为2>0恒成立,满足题意;(2)时,只需,所以,。例2.已知函数的定义域为R,求实数的取值范围。解:由题设可将问题转化为不等式对恒成立,即有解得。所以实数的取值范围为。若二次不等式中的取值范围有限制,则可利用根的分布解决问题。二、最值法将不等式恒成立问题转化为求函数最

5、值问题的一种处理方法,其一般类型有:专业技术资料word资料下载可编辑1)恒成立2)恒成立例3、若时,不等式恒成立,求的取值范围。解:设,则问题转化为当时,的最小值非负。(1)当即:时,又所以不存在;(2)当即:时,又(3)当即:时,又综上所得:例4.函数,若对任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考虑到不等式的分母,只需在时恒成立而得而抛物线在的最小值得注:本题还可将变形为,讨论其单调性从而求出最小值。例5:在ABC中,已知恒成立,求实数m的范围。解析:由,,恒成立,,即恒成立,例

6、6:求使不等式恒成立的实数a的范围。专业技术资料word资料下载可编辑解析:由于函,显然函数有最大值,。三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)恒成立2)恒成立。例7、已知时,不等式恒成立,求的取值范围。解:令,所以原不等式可化为:,要使上式在上恒成立,只须求出在上的最小值即可。例8、已知函数,若对任意恒有,试确定的取值范围。解:根据题意得:在上恒成立,即:在上恒成

7、立,设,则当时,所以例9.已知函数时恒成立,求实数的取值范围。解:将问题转化为对恒成立。令,则专业技术资料word资料下载可编辑由可知在上为减函数,故∴即的取值范围为。注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。四、变换主元法处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。例10.对任意,不等式恒成立,求的取值范围。分析:题中的不等式是关于的一元二次不等式,但若把看成主元,则问题可转化为一次不等式在上恒成立的问题。解:令,则原问题转化为恒成立(

8、)。当时,可得,不合题意。当时,应有解之得。故的取值范围为。注:一般地,一次函数在上恒有的充要条件为。例11、若不等式对满足的所有都成立,求的取值范围。解:设,对满足的,恒成立,解得:五、数形结合法数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。我们知道,函数图象和不等式有着密切的联系:1)函

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。