核电站ptr系统法兰失效分析

核电站ptr系统法兰失效分析

ID:24523581

大小:52.50 KB

页数:5页

时间:2018-11-14

核电站ptr系统法兰失效分析_第1页
核电站ptr系统法兰失效分析_第2页
核电站ptr系统法兰失效分析_第3页
核电站ptr系统法兰失效分析_第4页
核电站ptr系统法兰失效分析_第5页
资源描述:

《核电站ptr系统法兰失效分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、核电站PTR系统法兰失效分析唐世延(中国核电工程有限有限公司,福建福清350300)【摘 要】某核电厂PTR系统冷却水泵法兰运行过程中产生大量缺陷,发生了硼泄漏,对核安全造成威胁。通过化学成分检验、力学分析、组织结构分析等手段对法兰进行取样失效分析。试验发现法兰本体材料以及焊接热影响区域组织晶粒粗大,非金属夹杂物在管内晶界处连续分布。冷却水泵运行引起管道以及法兰的振动峰值速度提高。在存在非金属夹杂物的情况下,在管材内壁的非金属夹杂物处产生了疲劳裂纹,并不断向外扩展,最终导致法兰的泄漏。.jyqkm线性缺陷显示,缺陷位于管道内壁且距离焊

2、缝边缘约0.3mm的焊接热影响区。PTR系统其它同类法兰经液体渗透检查发现,8片法兰中有7片法兰存在线性缺陷显示。为保障核电站反应堆冷却介质的状态,确保核电站安全运行,防止后续类似事故发生,非常有必要对PTR系统失效法兰开展失效分析,判断其失效性质并分析失效原因。1 试验方法采用液体渗透探伤、材料化学成分分析(EDS,FEINANO400)、材料力学性能测试(电子万能试验机,,OlympusOLS4000)、裂纹断口扫描电镜及能谱分析(SEM/EDS,FEINANO400)等方法进行失效分析。2 试验结果与分析2.1 化学成分分析失效

3、法兰的材质为304L奥氏体不锈钢,为验证材料化学成分是否符合标准要求,从失效的法兰上截取试样进行化学成分分析,分析结果表明,化学成分符合规范的技术要求,但成分分析中发现存在较高含量(0.07%)的Al。2.2 力学性能分析根据GB/T228.1对失效法兰材料进行力学性能测试,结果表明,该材料的屈服强度,抗拉强度和伸长率指标均符合标准要求。2.3 显微组织分析对失效法兰母材与热影响区金相组织进行对比,发现焊接热影响区晶粒尺寸较大,这与焊接过程中热输入有关。对失效法兰母材的晶界结构进行扫描电镜分析,发现夹杂物主要沿晶界分布。能谱分析结果表

4、明夹杂物中含有Al2O3、MnS夹杂物以及Al2O3-SiO2-CaO系复合夹杂物,上述夹杂物中以含Al的夹杂物居多。根据GB/T10561对法兰基体材料进行了夹杂物评级,评级结果为1.0~1.5级。2.4 裂纹分析对裂纹断口的全貌进行分析,在内壁附近可以观察到端面呈现一系列相互平行的条纹,略微弯曲,呈波浪状,并与裂纹微观扩展方向垂直,裂纹的扩展方向均朝向波纹凸出的一侧,此为疲劳裂纹的典型特征。在裂纹断口上还发现各种形态的夹杂物,EDS检测结果表明这些夹杂物为富含Al、S的非金属夹杂物。通过扫描电镜观察管壁局部微裂纹的形貌,在微裂纹中

5、间部位可观察到条状夹杂物,能谱分析显示含有较高含量的Al,这进一步证实了含Al夹杂物对于该法兰失效起到了至关重要的作用。3 讨论扫描电镜及能谱分析结果表明,材料中存在大量的含铝相非金属夹杂物。化学成分分析结果证实Al含量高达0.07%,较高的Al含量与材料的冶炼、铸造和加工过程有关。Al2O3为钢中较为常见的夹杂物,Al2O3可以有许多种形态,由于它的熔点高(2050℃),所以它往往以初晶刚玉析出,刚玉是六角形且可以与其他三价M2O3类氧化物完全互溶[1]。Al2O3的主要有两类:其一是将铝加入钢中脱氧时生成的,其尺寸为1~4μm左右

6、;其二是来自耐火材料。文献[2-3]曾对304不锈钢中的夹杂物进行过分析,发现冶炼过程中耐火砖材料是Al的主要,夹杂物的主要种类是Al2O3-SiO2-CaO系复合夹杂、Al2O3夹杂、Al2O3-SiO2系硅酸盐夹杂以及SiO2夹杂。钢中非金属夹杂物的存在降低材料的塑性、韧性和疲劳性能,尤其当夹杂物以不利的形状和分布特征存在时,对材料的力学性能影响更为严重[4-5]。危害性最大的夹杂物是于炉渣和耐火材料的外来氧化物,它们尺寸大、形状不规则、分布集中并且变形性差。这些夹杂物塑性很差(MnS除外),与基体相属于非共格关系,结合力较弱,其

7、存在往往成为潜在的裂纹源,特别容易引起部件的早期疲劳破坏[6]。同时,铝硅钙夹杂物具有较高的熔点和硬度,其硬度随Al2O3含量的增加而升高,变形量小,当压力加工变形量增大时,铝硅钙被压碎并沿着加工方向呈串链状分布,严重地破坏了钢基体均匀的连续性。钢中非金属夹杂物的变形行为与基体之间的关系,可用夹杂物与基体之间的相对变形量来表示,即夹杂物的变形率V。夹杂物的变形率可在0~1范围变化,若变形率低,钢经加工变形后,由于钢产生塑性变形,而夹杂物基本上不变形,便在夹杂物和钢基体的界面处产生应力集中,导致在钢与夹杂物的界面处产生微裂纹。在交变载荷

8、的作用下,非金属夹杂物便成为构件在使用过程中引起疲劳破坏的隐患。疲劳裂纹起裂于不均匀局部滑移而形成的微裂纹,主要方式为表面滑移带形成、第二相、夹杂物或其界面起裂,晶界或亚晶界起裂、各类冶金缺陷和工艺缺陷的起裂等。工程金属

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。