无线网状网与协作中继技术

无线网状网与协作中继技术

ID:25591874

大小:86.86 KB

页数:8页

时间:2018-11-21

无线网状网与协作中继技术_第1页
无线网状网与协作中继技术_第2页
无线网状网与协作中继技术_第3页
无线网状网与协作中继技术_第4页
无线网状网与协作中继技术_第5页
资源描述:

《无线网状网与协作中继技术》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、无线网状网与协作中继技术 摘要:无线Mesh网络(WMN)是一种特殊的Adhoc网络,具有分层的网络结构,其传输骨干网具有多跳、拓扑稳定、无供电约束、业务流量相对汇聚等特性。提高WMN频谱空间复用度是增加网络容量有效的方法,而其设计的关键是有效控制无线链路间的干扰范围。基于多信道的组网技术是WMN关键技术之一,其核心是信道的分配,通过合理的信道分配以获得最大信道利用率。WMN中路由度量的选取需要考虑多跳无线链路间的相互干扰,而通过采用负载均衡路由技术可以均衡网络资源的使用,从而提高网络容量和节点的吞吐率。  无线Mesh网络(WMN)是一种多跳、自组织的宽带无线网络,一般由

2、Mesh路由器和Mesh客户节点组成。其典型结构是一种分级网络结构:Mesh路由器互联构成多跳无线骨干网,负责数据的中继;骨干网一般通过网关节点与其他网络互联,而Mesh客户节点通过Mesh路由器接入到WMN。通过WMN最终实现Mesh客户节点间、客户节点与Internet等其他网络间的互联互通。  与蜂窝移动通信系统不同,WMN是一种多跳的,具有自形成、自愈和自组织能力的无线网络。虽然WMN具有上述无线Adhoc网络的特性,但是WMN与无线Adhoc网络之间仍然存在许多重大差别。首先,Adhoc网络中节点是移动的,所以其网络拓扑结构具有动态变化特性;而在WMN中,负责中继

3、的Mesh路由器一般是静止的,所以骨干网的拓扑结构保持相对稳定。由于节点的移动性使得设备供电受限,在Adhoc网络的组网协议设计中必须考虑功耗因素,而WMN的中继节点保持静止,便于实现外部供电,所以功耗的限制相对减弱。另外,AdHoc网络的设计目标是为了实现移动节点间的对等网络通信,而WMN着眼于为各种业务需求的客户节点提供无线宽带接入功能。  对于任何一种无线网络来讲,提高网络传输容量都是组网协议首要的设计目标。与一般的多跳无线自组织网络相同,WMN中无线链路间也存在较强的相互影响,这使得“提高WMN网络传输容量”的设计目标更具挑战性。目前WMN组网协议设计的基本思路是:

4、充分挖掘WMN自身特点,采用跨层联合设计,提高网络容量,同时提供一定的QoS保障。本文围绕“提高WMN网络容量”这一核心问题,从提高频谱空间复用度、多信道技术以及路由优化等方面分析并总结当前WMN组网协议中的相关关键技术。1提高WMN的空间复用度  WMN是一种多跳无线网络,由于无线信道的广播特性,网络中任意一条链路都和地理位置与其相邻的无线链路间存在相互干扰,制约了网络的传输容量。另一方面,由于无线信道的衰减特性,多跳网络具有潜在的空间复用特性。设法提高网络的空间复用度,就能增加并行传输的链路数目,从而提升网络容量。  具有高空间复用度的组网协议的WMN基本设计思想是:有

5、效控制无线链路间的干扰范围。本文重点介绍采用高级物理层技术如定向天线、多输入多输出(MIMO)等的WMN和结合物理层功率控制的媒体接入控制(MAC)协议。  1.1基于定向天线技术的WMN  与传统的全向天线不同,定向天线(智能天线)可以将能量集中于某一方向传输,使天线在该方向上具有最强的增益,而其他方向上增益较小。而正是由于定向天线的传播具有这种波束方向性,可以提高WMN的空间复用度。但是,在提高空间复用度的同时,定向天线也给共享信道的访问引入了新的问题:定向隐藏终端问题、“耳聋”问题以及接收节点定位问题。  定向隐藏终端问题是指:物理上相邻的节点,由于传输方向的不匹配彼

6、此互不可见,形成隐藏终端。例如在图1中,相邻节点A、B分别向节点C发送,由于A、B在发送之前都无法通过载波侦听发现对方正在发送,即节点A、B是一对隐藏节点,所以传输会在节点C处发生碰撞。显然这种隐藏终端问题在全向天线网络中是不会发生的。“耳聋”问题是指:发送节点不能与某个节点建立无线通信,原因是该节点正在另一个方向上侦听或者接收。接收节点定位问题是指:在通信前,发送节点必须首先确定 接收节点的位置,才能确定发射波束的方向,所以节点必须对邻居节点位置进行跟踪和定位。  为了有效解决定向天线引入的新问题,基于定向天线的MAC研究大多采用跨层设计机制,通过MAC子层与物理层的协同

7、工作,可以提高WMN容量。  D-MAC协议是基于IEEE802.11分布式协调功能(DCF)的定向天线MAC协议。该协议通过定向发送请求发送(RTS)、数据(DATA)、确认(ACK)帧,达到减少暴露终端数目以及提高空间复用度,而允许发送(CTS)帧仍然采用全向传输,从而减少潜在的隐藏终端;协议采用全球定位系统(GPS)定位邻居节点。  基于带外音的定向MAC协议[1]提出采用全向带外音解决“耳聋”问题。协议采用定向传输RTS、CTS、DATA和ACK,当数据传输完毕后,收、发节点都调整回全向发送带外音,提示邻居

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。