功率mosfet教程

功率mosfet教程

ID:30253293

大小:547.00 KB

页数:20页

时间:2018-12-28

功率mosfet教程_第1页
功率mosfet教程_第2页
功率mosfet教程_第3页
功率mosfet教程_第4页
功率mosfet教程_第5页
资源描述:

《功率mosfet教程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.功率MOSFET教程作者:JonathanDodgeMicrosemiCorporation众所周知,由于采用了绝缘栅,功率MOSFET器件只需很小的驱动功率,且开关速度优异。可以说具有“理想开关”的特性。其主要缺点是开态电阻(RDS(on))和正温度系数较高。本教程阐述了高压N型沟道功率MOSFET的特性,并为器件选择提供指导。最后,解释了Microsemi公司AdvancedPowerTechnology(ATP)MOSFET的数据表。功率MOSFET结构图1为APTN型沟道功率MOSFET剖面图(本文只讨论N型沟道MOS

2、FET)。在栅极和源极间加正压,将从衬底抽取电子到栅极。如果栅源电压等于或者高于阈值电压,栅极下沟道区域将积累足够多的电子从而产生N型反型层;在衬底形成导电沟道(MOSFET被增强)。电子在沟道内沿任意方向流动。电子从源极流向漏极时,产生正向漏极电流。沟道关断时,正向漏极电流被阻断,衬底与漏极之间的反偏PN结维持漏源之间的电势差。对于N型MOSFET,正向导通时,只有电子流,没有少子。开关速度仅受限于MOSFET内寄生电容的充电和放电速率。因此,开关速率可以很快,开关损耗很低。开关频率很高时,这让功率MOSFET具有很高的效率。

3、图1:N型沟道MOSFET剖面图。开态电阻开态电阻RDS(on)主要受沟道、JFET(积累层)、漂移区和寄生效应(多层金属,键和线和封装)等因素的影响电压超过150V时,RDS(on)主要取决于漂移区电阻。页.图2:RDS(on)与电流的关系。高压MOSFET中RDS(on)与电流的相关较弱。电流增大一倍RDS(on)仅提高了6%,见图2。图3:RDS(on)与温度的关系。相反,温度对RDS(on)的影响很大。如图3,温度从25℃升高到125℃,开态电阻提高近一倍。图3中曲线的斜率反映了RDS(on)的温度系数,由于载流子仅为多

4、子,该温度系数永远为正。随着温度的升高,正温度系数将使导通损耗按照I2R增大。功率MOSFET并联时,正的RDS(on)温度系数可以保证热稳定性,这是其很好的特性。然而,不能保证各分路的电流均匀。这一点容易被误解。MOSFET易于并联正是因为其参数的分布狭窄,特别是RDS(on)。并且与正温度系数相结合,可避免电流独占。页.如图4,对于任何给定的芯片尺寸,随着额定电压的增大,RDS(on)也会随之增大。图4:归一化后的RDS(on)与V(BR)DSS的关系。对于功率MOSV型和功率MOS7型MOSFET器件,通过对额定RDS(o

5、n)与V(BR)DSS的关系曲线进行拟和,可发现RDS(on)增量与V(BR)DSS的平方成正比。这种非线性关系显示了降低晶体管导通损耗的可能[2]。本征和寄生参数JFET寄生于MOSFET结构中,见图1。这对RDS(on)影响很大,并且是MOSFET正常操作的一部分。本征衬底二极管衬底和漏之间的PN结所形成的本征二极管称为体二极管(见图1)。由于衬底与源极短接,无法将反向漏极电流关断,这样体二极管构成了很大的电流通路。当反向漏极电流流过时,器件导通损耗降低,这是由于电子流过沟道,并且电子和少数载流子流过体二极管。本征衬底二极管

6、对于需要反向漏极电流(通常称为自振荡电流)通路的电路十分方便,例如:电桥电路。对于这样的电路,FREDFET的反向恢复特性通常都得到了改善。FREDFET是AdvancedPowerTechnology所使用的商标,用来区分那些采用了额外工艺步骤加快本征衬底二极管反向恢复特性的MOSFET。FREDFET中没有使用分离的二极管;仅仅是MOSFET的本征衬底二极管。通过电子辐射(经常使用的方法)或者掺杂铂来控制衬底二极管中少数载流子的寿命,极大地降低了反向恢复充电和时间。FREDFET中额外工艺带来的负面影响是漏电流的增大,特别是

7、高温时。然而,考虑到MOSFET开始工作时漏电流比较低,FREDFET带来的漏电流在PN结温度低于150℃时并不显著。根据电子辐射剂量的不同,FREDFET的额定RDS(on)可能比所对应的MOSFET还要高。FREDFET的衬底二极管正向压降也会稍微高于所对应的MOSFET。对于栅极充电和开关速度,两种器件性能相同。下文中,如无特别说明,MOSFET这个词既可以代表MOSFET,也可以代表FREDFET。页.与分立的快恢复二极管相比,无论是MOSFET还是FREDFET,其反向恢复性能都显得很“笨重”。对在125℃工作的硬开关

8、而言,由于衬底二极管反向恢复电流造成的开关损耗比分立快恢复二极管要高出5倍。造成这种状况的原因有两点:1.对于MOSFET或FREDFET,体二极管的面积相同,但同样功能的分立二极管面积小很多,这样反向恢复充电效应减小了很多。2.对于MOSFET或FREDFET

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。