四种典型全控型器件比较

四种典型全控型器件比较

ID:32784444

大小:859.50 KB

页数:10页

时间:2019-02-15

四种典型全控型器件比较_第1页
四种典型全控型器件比较_第2页
四种典型全控型器件比较_第3页
四种典型全控型器件比较_第4页
四种典型全控型器件比较_第5页
资源描述:

《四种典型全控型器件比较》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实用标准文案四种典型全控型器件的比较精彩文档实用标准文案四种典型全控型器件的比较一、对四种典型全控型器件的介绍1、门极可关断晶闸管(GTO)1)GTO的结构与工作原理芯片的实际图形GTO结构的纵断面GTO结构的纵断面图形符号GTO的内部结构和电气图形符号2)工作原理:设计a2较大,使晶体管V2控制灵敏。导通时a1+a2=1.05更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。下图为工作原理图。22222、电力晶体管(GTR)1)电力晶体管的结构:精彩文档实用标准文案内部结构电

2、气图形符号NPN型电力晶体管的内部结构及电气图形符号2)工作原理:在电力电子技术中,GTR主要工作在开关状态。晶体管通常连接成共发射极电路,GTR通常工作在正偏(Ib>0)时大电流导通;反偏(Ib<0)时处于截止状态。因此,给GTR的基吸施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。3、电力场效应晶体管(PowerMOSFET)1)电力MOSFET的结构MOSFET元组成剖面图图形符号电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上,使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和提高电流密度。精彩文档实用

3、标准文案2)电力MOSFET的工作原理:当漏极接电源正极,源极接电源负极,栅源极之间电压为零或为负时,P型区和N-型漂移区之间的PN结反向,漏源极之间无电流流过。如果在栅极和源极间加正向电压UGS,由于栅极是绝缘的,不会有电流。但栅极的正电压所形成的电场的感应作用却会将其下面的P型区中的少数载流子电子吸引到栅极下面的P型区表面。当uGS大于某一电压值UGS(th)时,栅极下面的P型区表面的电子浓度将超过空穴浓度,使P型反型成N型,沟通了漏极和源极。此时,若在漏源极之间加正向电压,则电子将从源极横向穿过沟道,然后垂直(即纵向)流向漏极,形成漏极电流iD。电压

4、UGS(th)称为开启电压,uGS超过UGS(th)越多,导电能力就越强,漏极电流iD也越大。4、绝缘栅双极晶体管(IGBT)1)基本结构内部结构简化等效电路电气图形符号2)绝缘栅双极晶体管(IGBT)的工作原理:IGBT的驱动原理与电力MOSFET基本相同,它是一种压控型器件。其开通和关断是由栅极和发射极间的电压uGE决定的,当uGE为正且大于开启电压uGE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流使其导通。当栅极与发射极之间加反向电压或不加电压时,MOSFET内的沟道消失,晶体管无基极电流,IGBT关断。精彩文档实用标准文案PNP晶体管

5、与N沟道MOSFET组合而成的IGBT称为N沟道IGBT,记为N-IGBT。对应的还有P沟道IGBT,记为P-IGBT。N-IGBT和P-IGBT统称为IGBT。由于实际应用中以N沟道IGBT为多。一、对四种典型全控型器件进行容量及频率比较GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。目前,GTO的容量水平达6000A/6000V、1000A/9000V,频率为1kHZ。GTR是一种电流控制的双极双结大功率、高反压电力电子器件,具有自关断能力,其额定值已达1800V/800A/2kHz、1400v/600A/5k

6、Hz、600V/3A/100kHz。 电力场效应晶体管电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。开关时间在10~100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。IGBT属于具有功率MOSFET的高速性能与双极的低电阻性能的功率器件。它的应用范围一般都在耐压600V以上、电流10A以上、频率为1kHz以上的区域。功率一览器件名称电力MOSFETIGBTGTRGTO电压/V1000250018006000电流/A10010004006000工作频率由高到低器件名称电力MOSFETIGBTGTRGTO开关频率3M

7、50K30K10K二、对四种典型全控型器件进行驱动方式及驱动功率比较1、门极可关断晶闸管(GTO)精彩文档实用标准文案对门极驱动电路的要求:1)正向触发电流iG。由于GTO是多元集成结构,为了使内部并联的GTO元开通一致性好,故要求GTO门极正向驱动电流的前沿必须有足够的幅度和陡度,正脉冲的后沿陡度应平缓。2)反向关断电流﹣iG。为了缩短关断时间与减少关断损耗,要求关断门极电流前沿尽可能陡,而且持续时间要超过GTO的尾部时间。还要求关断门极电流脉冲的后沿陡度应尽量小。GTO的驱动电路:小容量GTO门极驱动电路较大容量GTO桥式门极驱动电路2、电力晶体管(G

8、TR)1)对基极驱动电路的要求:①由于GTR主电路电压较高,控制电

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。