中学高中数学必修5素材:数列求和的基本方法和技巧

中学高中数学必修5素材:数列求和的基本方法和技巧

ID:33129294

大小:715.50 KB

页数:11页

时间:2019-02-21

中学高中数学必修5素材:数列求和的基本方法和技巧_第1页
中学高中数学必修5素材:数列求和的基本方法和技巧_第2页
中学高中数学必修5素材:数列求和的基本方法和技巧_第3页
中学高中数学必修5素材:数列求和的基本方法和技巧_第4页
中学高中数学必修5素材:数列求和的基本方法和技巧_第5页
资源描述:

《中学高中数学必修5素材:数列求和的基本方法和技巧》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧。一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。1、差数列求和公式:[来源:Zxxk.Com]2、等比数列求和公式:3、4、4、例:已知,求的前n项和.解:由由等比数列求和公式得===1-解析:如果计算过程中出现了这些关于n的多项式的求和形式,可以直接利用公式。二、错位相减这种方法是在推

2、导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列。例:求数列a,2a2,3a3,4a4,…,nan,…(a为常数)的前n项和。解:若a=0,则Sn=0;若a=1,则Sn=1+2+3+…+n=;若a≠0且a≠1,则Sn=a+2a2+3a3+4a4+…+nan∴aSn=a2+2a3+3a4+…+nan+1∴(1-a)Sn=a+a2+a3+…+an-nan+1=∴Sn=当a=0时,此式也成立。解析:数列是由数列与对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公

3、式就是用这种方法推导出来的),但要注意应按以上三种情况进行讨论,最后再综合成两种情况。三、倒序相加这是推导等差数列的前n...项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个。[例5]求证:证明:设…………………………..①把①式右边倒转过来得:(反序)又由可得:…………..……..②①+②得(反序相加)∴解析:此类型关键是抓住数列中与首末两端等距离的两项之和相等这一特点来进行倒序相加的。四、分组求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合

4、并即可。例:Sn=-1+3-5+7-…+(-1)n(2n-1)[来源:Zxxk.Com]解法:按n为奇偶数进行分组,连续两项为一组。当n为奇数时:Sn=(-1+3)+(-5+7)+(-9+11)+…+(-2n+1)=2×+(-2n+1)=当n为偶数时:Sn=(-1+3)+(-5+7)+(-9+11)+…+[(-2n+3)+(2n+1)]=2×-n(n为奇数)n(n为偶数)=n,∴五、裂项法求和这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如:(1)(2)(3)

5、(4)(5)(6)例:求数列,,,…,,…的前n项和S解:∵=),Sn===...解析:要先观察通项类型,在裂项求和,而且要注意剩下首尾两项,还是剩下象上例中的四项,后面还很可能和极限、求参数的最大小值联系。六、合并求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.例:数列{an}:,求S2002.解:设S2002=,由可得:……∵(找特殊性质项)∴ S2002=(合并求和)====5七、拆项求和先研究通项,通项可以分解成几个等差或等比数列的和或差的形式,再代入公式求和。n例:求数5,5

6、5,555,…,55…5的前n项和Snn解:因为55…5=n所以Sn=5+55+555+…+55…5===解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。另外:Sn=可以拆成:Sn=(1+2+3+…+n)+()说明:本资料适用于高三总复习,也适用于高一“数列”一章的学习。[来源:Zxxk.Com]数列求和问题是数列的基本内容之一,也是高考的热点和重点。由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。鉴于此,下面就数列求和问题的常见题型及解法技巧作一归纳,以提高同学们数列求和的能力。...一、利用常用求和公式求和利用下列常用

7、求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:2、等比数列求和公式:3、4、5.例1.已知,求的前n项和.解:由,由等比数列求和公式得:===1-例2.是否存在常数a、b、c,使等式:12·+22·3+32·4+……+n2(n+1)=(an2+bn+c)对一切自然数n都成立?并证明你的结论。分析:这是一个开放性命题,可以从两个角度来解决。解一:∵n2(n+1)=n3+n2∴12·2+22·3+…….+n2(n+1)=(13+12)+(23+22)+(33+32)+……+(n3+n2)=(13+23+33+……+n3)+(12+22+32+……

8、+n2)=n2(n+1)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。