16.3 二次根式的加减(2)

16.3 二次根式的加减(2)

ID:37369464

大小:180.47 KB

页数:4页

时间:2019-05-22

16.3 二次根式的加减(2)_第1页
16.3 二次根式的加减(2)_第2页
16.3 二次根式的加减(2)_第3页
16.3 二次根式的加减(2)_第4页
资源描述:

《16.3 二次根式的加减(2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、16.3二次根式的加减(2)教学内容:利用二次根式化简的数学思想解应用题.教学目标知识与技能目标:运用二次根式、化简解应用题.过程与方法目标:通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现

2、了教师主导和学生主体的作用,对实现教学目标起了重要的作用; 2、讲练结合法:在例题教学中,引导学生阅读,与整式的加减进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的加减模型,形成有效的学习策略。2、阅读的方法 让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。3、分组讨论法 将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。4、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。媒体设计:PPT课

3、件,展台。课时安排:1课时。教学过程:一、复习引入上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.二、探索新知例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,根据三角形面

4、积公式就可以求出x的值.解:设x后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x依题意,得:x·2x=35x2=35x=所以秒后△PBQ的面积为35平方厘米.PQ==5答:秒后△PBQ的面积为35平方厘米,PQ的距离为5厘米.例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,只需知道这四段的长度.解:由勾股定理,得AB==2BC==所需钢材长度为AB+BC+AC+BD=2++5+2=3+7≈3×2.24+7≈13.7(m)答:要焊接一个如图所示的钢架,大约需要13.7m的钢

5、材.三、应用拓展例3.若最简根式与根式是同类二次根式,求a、b的值.(同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;事实上,根式不是最简二次根式,因此把化简成

6、b

7、·,才由同类二次根式的定义得3a-b=2,2a-b+6=4a+3b.解:首先把根式化为最简二次根式:==

8、b

9、·由题意得∴∴a=1,b=1四、归纳小结本节课应掌握运用最简二次根式的合并原理解决实际问题.五、布置作业一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(结果用最简二次根式)A.5B.C.2D.

10、以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.13B.C.10D.5二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,那么这个等腰直角三角形的周长是________.(结果用最简二次根式)三、综合提高题1.若最简二次根式与是同类二次根式,求m、n的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(

11、a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=()2,5=()2,你知道是谁的二次根式呢?下面我们观察:(-1)2=()2-2·1·+12=2-2+1=3-2反之,3-2=2-2+1=(-1)2∴3-2=(-1)2∴=-1求:(1);(2);(3)你会算吗?(4)若=,则m、n与a、b的关系是什么?并说明理由.答案:一、1.A2.C;二、1.202.2+2三、1.依题意,得,,所以或或或2.(1)==+1;(2)==+1(3)==-1;(4)理由:两边平方得a±2=m+n±2所以板书设计:§

12、16.3.二次根式的加减(2)情境引入

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。