高分子概论 聚合物的力学性能

高分子概论 聚合物的力学性能

ID:38316942

大小:325.00 KB

页数:29页

时间:2019-06-09

高分子概论 聚合物的力学性能_第1页
高分子概论 聚合物的力学性能_第2页
高分子概论 聚合物的力学性能_第3页
高分子概论 聚合物的力学性能_第4页
高分子概论 聚合物的力学性能_第5页
资源描述:

《高分子概论 聚合物的力学性能》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第七节聚合物的力学性能聚合物的力学性能指的是其受力后的响应,如形变大小、形变的可逆性及抗破损性能等,这些响应可用一些基本的指标来表征。一、表征力学性能的基本指标(1)应变与应力材料在外力作用下,其几何形状和尺寸所发生的变化称应变或形变,通常以单位长度(面积、体积)所发生的变化来表征。材料在外力作用下发生形变的同时,在其内部还会产生对抗外力的附加内力,以使材料保持原状,当外力消除后,内力就会使材料回复原状并自行逐步消除。当外力与内力达到平衡时,内力与外力大小相等,方向相反。单位面积上的内力定义为应

2、力。材料受力方式不同,发生形变的方式亦不同,材料受力方式主要有以下三种基本类型:(i)简单拉伸(drawing):材料受到一对垂直于材料截面、大小相等、方向相反并在同一直线上的外力作用。材料在拉伸作用下产生的形变称为拉伸应变,也称相对伸长率(e)。拉伸应力=F/A0(A0为材料的起始截面积)拉伸应变(相对伸长率)e=(l-l0)/l0=Dl/l0简单拉伸示意图A0l0lDlAFF(ii)简单剪切(shearing)材料受到与截面平行、大小相等、方向相反,但不在一条直线上的两个外力作用,使材料发

3、生偏斜。其偏斜角的正切值定义为剪切应变()。A0FF简单剪切示意图剪切应变=tg剪切应力s=F/A0(iii)均匀压缩(pressurizing)材料受到均匀压力压缩时发生的体积形变称压缩应变(V)。A0材料经压缩以后,体积由V0缩小为V,则压缩应变:V=(V0-V)/V0=DV/V0材料受力方式除以上三种基本类型外,还有弯曲和扭转。(iv)弯曲(bending)对材料施加一弯曲力矩,使材料发生弯曲。主要有两种形式:F一点弯曲(1-pointbending)F三点弯曲(3-poin

4、tbending)(v)扭转(torsion):对材料施加扭转力矩。FF(2)弹性模量是指在弹性形变范围内单位应变所需应力的大小。是材料刚性的一种表征。分别对应于以上三种材料受力和形变的基本类型的模量如下:拉伸模量(杨氏模量)E:E=/剪切模量(刚性模量)G:G=s/体积模量(本体模量)B:B=p/V(3)硬度:是衡量材料表面承受外界压力能力的一种指标。(4)机械强度当材料所受的外力超过材料的承受能力时,材料就发生破坏。机械强度是衡量材料抵抗外力破坏的能力,是指在一定条件下材料所能承受

5、的最大应力。根据外力作用方式不同,主要有以下三种:(i)抗张强度衡量材料抵抗拉伸破坏的能力,也称拉伸强度。厚度d宽度bPP在规定试验温度、湿度和实验速度下,在标准试样上沿轴向施加拉伸负荷,直至试样被拉断。试样断裂前所受的最大负荷P与试样横截面积之比为抗张强度t:t=P/b•d(ii)抗弯强度也称挠曲强度或弯曲强度。抗弯强度的测定是在规定的试验条件下,对标准试样施加一静止弯曲力矩,直至试样断裂。Pdbl0/2l0/2抗弯强度测定试验示意图设试验过程中最大的负荷为P,则抗弯强度f为:f=1.

6、5Pl0/bd2(iii)冲击强度(impactstength)(i)冲击强度也称抗冲强度,定义为试样受冲击负荷时单位截面积所吸收的能量。是衡量材料韧性的一种指标。测定时基本方法与抗弯强度测定相似,但其作用力是运动的,不是静止的。Pbl0/2l0/2d冲击强度测定试验示意图试样断裂时吸收的能量等于断裂时冲击头所做的功W,因此冲击强度为:i=W/bd第八节玻璃态聚合物的屈服与断裂玻璃态聚合物被拉伸时,典型的应力-应变曲线如右图:在曲线上有一个应力出现极大值的转折点B,叫屈服点,对应的应力称屈服

7、应力(y);xB应变应力ebby玻璃态聚合物的应力-应变曲线在屈服点之前,应力与应变基本成正比(虎克弹性),经过屈服点后,即使应力不再增大,但应变仍保持一定的伸长;当材料继续被拉伸时,将发生断裂,材料发生断裂时的应力称断裂应力(b),相应的应变称为断裂伸长率(eb)。xB应变应力ebby玻璃态聚合物的应力-应变曲线材料在屈服点之间发生的断裂称为脆性断裂;在屈服点后发生的断裂称为韧性断裂。在屈服点后出现的较大应变在移去外力后是不能复原的。但是如果将试样温度升到其Tg附近,该形变则可完全

8、复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。--强迫高弹形变强迫高弹形变产生的原因原因在于在外力的作用下,玻璃态聚合物中本来被冻结的链段被强迫运动,使高分子链发生伸展,产生大的形变。但由于聚合物仍处于玻璃态,当外力移去后,链段不能再运动,形变也就得不到复原,只有当温度升至Tg附近,使链段运动解冻,形变才能复原。这种大形变与高弹态的高弹形变在本质上是相同的,都是由链段运动所引起。根据材料的力学性能及其应力-应变曲线特征,可将非晶态聚合物的应力-应变曲线大致分为六类

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。