微波介质谐振器的发展和应用前景

微波介质谐振器的发展和应用前景

ID:41133581

大小:438.01 KB

页数:6页

时间:2019-08-17

微波介质谐振器的发展和应用前景_第1页
微波介质谐振器的发展和应用前景_第2页
微波介质谐振器的发展和应用前景_第3页
微波介质谐振器的发展和应用前景_第4页
微波介质谐振器的发展和应用前景_第5页
资源描述:

《微波介质谐振器的发展和应用前景》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、微波介质谐振器的发展和应用前景成都微波技术支持工程师:郑国全一、微波是什么微波是指频率300MHz-3000GHz的电磁波,是无线电波中的一个频段,即波长在1米(不含1米)到0.1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”,微波作为一种电磁波具有波粒二象性。二、微波的特性微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。从电子学和物理

2、学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点:穿透性微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,物料内外加热均匀一致。选择性加热物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同

3、,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此对于食品,含水量的多少对微波加热效果影响很大。热惯性小微波对介质材料是瞬时加热升温,能耗也很低。另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。似光性和似声性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。使得微波的特点与几何光学相似,即

4、所谓的似光性。因此在微波频段工作,能使电路元件尺寸减小,系统更加紧凑。可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。由于微波波长与物体的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似于声学喇叭及萧与笛;微波谐振腔类似于声学共鸣腔。非电离性微波的量子能量还不够大,不足以改变物质分子的内部结构或破坏分子之间的化学键。再从物理学角度看,分子原子在外加电磁场的作用下所呈现

5、的许多共振现象都发生在微波范围,因而微波为探索物质的内部结构和基本特性提供了有效的研究手段。利用这一特性,还可以制作许多微波器件信息性由于微波频率很高,所以在不大的相对带宽下,其可用的频带很宽,可达数百甚至上千兆赫兹。这是低频无线电波无法比拟的。这意味着微波的信息容量大,所以现代多路通信系统,包括卫星通信系统,几乎无一例外都是工作在微波波段。另外,微波信号还可以提供相位信息,极化信息,多普勒频率信息。这在目标检测,遥感目标特征分析等应用中十分重要微波还具有其它所谓的非热效应,如电效应、磁效应及化学效应等,根据这些效应,我们可

6、以开发出微波的更多应用领域。三、微波的用途微波成为一门技术科学,开始于20世纪30年代。微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明是另一标志。在第二次世界大战中,微波技术得到飞跃发展。因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。至今,微波技术已成为一门无论在理论和技术上都相当成熟的、又是不断向纵深发展的学科。微波振荡源的固体化以及微波系统的集成化是现代微波技术发展的两个重要方向。固态微波器件在功

7、率和频率方面的进展,使得很多微波系统中常规的微波电子管已为或将为固体源所取代。固态微波源的发展也促进了微波集成电路的研究。频率不断向更高范围推进,仍然是微波研究和发展的一个主要趋势。微波的发展还表现在应用范围的扩大。微波的最重要应用是雷达和通信。雷达不仅用于国防,同时也用于导航、气象测量、大地测量、工业检测和交通管理等方面。通信应用主要是现代的卫星通信和常规的中继通信。射电望远镜、微波加速器等对于物理学、天文学等的研究具有重要意义。毫米波微波技术对控制热核反应的等离子体测量提供了有效的方法。微波遥感已成为研究天体、气象和大地

8、测量、资源勘探等的重要手段。微波在工业生产、农业科学等方面的研究,以及微波在生物学、医学等方面的研究和发展已越来越受到重视。微波与其他学科互相渗透而形成若干重要的边缘学科,其中如微波天文学、微波气象学、微波波谱学、量子电动力学、微波半导体电子学、微波超导电子学等,已经比较成熟。微波声学的研

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。