模电课件2.2PN结的形成及特点

模电课件2.2PN结的形成及特点

ID:46806385

大小:216.50 KB

页数:11页

时间:2019-11-28

模电课件2.2PN结的形成及特点_第1页
模电课件2.2PN结的形成及特点_第2页
模电课件2.2PN结的形成及特点_第3页
模电课件2.2PN结的形成及特点_第4页
模电课件2.2PN结的形成及特点_第5页
资源描述:

《模电课件2.2PN结的形成及特点》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2PN结2.2.1PN结的形成2.2.2PN结的单向导电性2.2.3PN结的电容效应2.2.1PN结的形成在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程:因浓度差多子的扩散运动由杂质离子形成空间电荷区空间电荷区形成内电场内电场促使少子漂移内电场阻止多子扩散最后,多子的扩散和少子的漂移达到动态平衡。对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为PN结。在空间电荷区,由于缺少多子,所以也称耗尽层。图2.

2、6PN结的形成过程(动画2-3)PN结形成的过程可参阅图2.6。2.2.2PN结的单向导电性如果外加电压使PN结中:P区的电位高于N区的电位,称为加正向电压,简称正偏;PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。P区的电位低于N区的电位,称为加反向电压,简称反偏。(1)PN结加正向电压时的导电情况外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可

3、忽略漂移电流的影响,PN结呈现低阻性。PN结加正向电压时的导电情况如图2.7所示。(动画2-4)图2.7PN结加正向电压时的导电情况(2)PN结加反向电压时的导电情况外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场的作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流

4、也称为反向饱和电流。PN结加反向电压时的导电情况如图2.8所示。图2.8PN结加反向电压时的导电情况PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。(动画2-5)图2.8PN结加反向电压时的导电情况2.2.3PN结的电容效应PN结具有一定的电容效应,它由两方面的因素决定。一是势垒电容CB,二是扩散电容CD。(1)势垒电容CB势垒电容是由空间电荷区的离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的

5、厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图见图2.9。图2.9势垒电容示意图扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因PN结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在P区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。(2)扩散电容CD反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如图2.10所示。图2.10扩散电容示意图当外加正向电压不同时,扩散电

6、流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。