LED和LD的光源特性测试实验.doc

LED和LD的光源特性测试实验.doc

ID:50894806

大小:1.46 MB

页数:6页

时间:2020-03-15

LED和LD的光源特性测试实验.doc_第1页
LED和LD的光源特性测试实验.doc_第2页
LED和LD的光源特性测试实验.doc_第3页
LED和LD的光源特性测试实验.doc_第4页
LED和LD的光源特性测试实验.doc_第5页
资源描述:

《LED和LD的光源特性测试实验.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、此文档收集于网络,如有侵权,请联系网站删除LD/LED光源特性测试实验1.实验目的通过测量LED发光二极管和LD半导体激光器的输出功率-电流(P-I)特性曲线和P-I特性随器件温度的变化,理解LED发光二极管和LD半导体激光器在工作原理及工作特性上的差异。2.实验原理2.1LD工作原理从激光物理学中我们知道,半导体激光器的粒子数反转分布是指载流子的反转分布。正常条件下,电子总是从低能态的价带填充起,填满价带后才能填充到高能态的导带;而空穴则相反。如果我们用电注入等方法,使p-n结附近区域形成大量的非平衡载流子,即在小于复合寿命的时间内,电子在导带,空穴在价带分别达到

2、平衡,如图1所示,那么在此注入区内,这些简并化分布的导带电子和价带空穴就处于相对反转分布,称之为载流子反转分布。注入区称为载流子分布反转区或作用区。结型半导体激光器通常用与p-n结平面相垂直的一对相互平行的自然解理面构成平面腔。在结型半导体激光器的作用区内,开始时导带中的电子自发地跃迁到价带和空穴复合,产生相位、方向并不相同的光子。大部分光子一旦产生便穿出p-n结区,但也有一部分光子在p-n结区平面内穿行,并行进相当长的距离,因而它们能激发产生出许多同样的光子。这些光子在平行的镜面间不断地来回反射,每反射一次便得到进一步的放大。这样重复和发展,就使得受激辐射趋于占压

3、倒的优势,即在垂直于反射面的方向上形成激光输出。图1半导体激光器的能带图此文档仅供学习与交流此文档收集于网络,如有侵权,请联系网站删除2.2LED工作原理发光二极管是大多由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图2所示。由于复合是在少子扩散区内发光的,所以光仅在靠近P

4、N结面数μm以内产生。图2LED发光原理假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。我们把发光的复合量与总复合量的比值称为内量子效率。(1.1)式中,Nr为产生的光子数,G为注入的电子-空穴对数。但是,产生的光子又有一部分会被LED材料本射吸收,而不能全部射出器件之外。作为一种发光器件,我们更感兴趣的是它能发出多少光子,表征这一性能的参数就是外量子效率(1.2)式中,

5、NT为器件射出的光子数。发光二极管所发之光并非单一波长,如图3所示。由图可见,该发光管所发之光中某一波长λ0此文档仅供学习与交流此文档收集于网络,如有侵权,请联系网站删除的光强最大,该波长为峰值波长。理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。图3LED光谱图2.3LED/LD的P-I特性在结构上,由于LED与LD相比没有光学谐振腔。因此,LD和LED的功率与电流的P-I关系特

6、性曲线有很大的差别,如图4所示。LED的P-I曲线基本上是一条近似的线性直线,只有当电流过大时,由于PN结发热产生饱和现象,使P-I曲线的斜率减小。LEDLD图4LED/LD的P-I特性曲线此文档仅供学习与交流此文档收集于网络,如有侵权,请联系网站删除对于半导体激光器来说,当正向注入电流较低时,增益小于0,此时半导体激光器只能发射荧光;随着电流的增大,注入的非平衡载流子增多,使增益大于0,但尚未克服损耗,在腔内无法建立起一定模式的振荡,这种情况被称为超辐射;当注入电流增大到某一数值时,增益克服损耗,半导体激光器输出激光,此时的注入电流值定义为阈值电流Ith。由图4可

7、以看出,注入电流较低时,输出功率随注入电流缓慢上升。当注入电流达到并超出阈值电流后,输出功率陡峭上升。我们把陡峭部分外延,将延长线和电流轴的交点定义为阈值电流Ith。可以根据其P-I曲线可以求出LD的外微分量子效率ηD。其具有如下关系:(1.3)因此在曲线中,曲线的斜率表征的就是外微分量子效率。2.4LD的温度特性由于光电子器件是由半导体材料制成,因此温度对其光电特性影响也很大。随着温度的增加,LD的阈值逐渐增大,光功率逐渐减小,外微分量子效率逐渐减小。阈值与温度的近似关系可以表示为:(1.4)式中,Tr室温,Ith(Tr)为室温下的阈值电流,T0为特征温度不同

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。