分布式反馈激光器.doc

分布式反馈激光器.doc

ID:51841871

大小:325.00 KB

页数:3页

时间:2020-03-16

分布式反馈激光器.doc_第1页
分布式反馈激光器.doc_第2页
分布式反馈激光器.doc_第3页
资源描述:

《分布式反馈激光器.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、DFB分布式反馈激光器091041A谢伟超DFB(DistributedFeedbackLaser),即分布式反馈激光器,其不同之处是内置了布拉格光栅(BraggGrating),属于侧面发射的半导体激光器。DFB激光器将布拉格光栅集成到激光器内部的有源层中(也就是增益介质中),在谐振腔内即形成选模结构,可以实现完全单模工作。目前,DFB激光器主要以半导体材料为介质,包括锑化镓(GaSb)、砷化镓(GaAs)、磷化铟(InP)、硫化锌(ZnS)等。DFB激光器最大特点是具有非常好的单色性(即光谱纯度),它的线

2、宽普遍可以做到1MHz以内,以及具有非常高的边摸抑制比(SMSR),目前可高达40-50dB以上。设计和制作在高速调制下仍能保持单纵模工作的激光器是十分重要的,这类激光器统称动态单模半导体激光器。实现动态单纵模工作的最有效的方法之一,就是在半导体激光器内部建立一个布拉格光栅,靠光栅的反馈来实现纵模选择。这种结构还能够在更宽的工作温度和工作电流范围内抑制模式跳变,实现动态单模。分布反馈半导体激光器(DFB-LD),在DFB-LD中,光栅分布在整个谐振腔中,所以称为分布反馈。因为采用了内部布拉格光栅选择波长,所以

3、DFB-LD的谐振腔损耗有明显的波长依存性,这一点决定了它在单色性和稳定性方面优于一般的F-P腔激光器。结构及工作机理DFB激光器的激光振荡不是靠F—P腔来实现,而是依靠沿纵向等间隔分布的光栅所形成的光耦合,如图2—81所示。图中光栅的周期为A,称为栅距。当电流注入激光器后,有源区内电子——空穴复合,辐射出能量相应的光子,这些光子将受到有源层表面每一条光栅的反射。在DFB激光器的分布反馈中,此时的反射是布拉格发射,光栅的栅条间入射光和反射光的方向恰好相反。 满足上式的那些特定波长的光才会受到强烈反射,从而实现

4、动态单纵模工作。式也称为分布反馈条件(一般m取1)。DFB-LD的光栅是完全均匀对称的,使得其发光出现了两个主模同时振荡的现象。为了将辐射功率集中在同一主模上,同时使各振荡模式的阈值增益差增大,可以采用如下方法:  (1)在光栅中引进一个2/4相移;  (2)将解理面之一做成斜面或增透,造成非对称的端面反射率;  (3)在有源区中靠近腔面的一小段区域上,没有布拉格光栅,形成无分布反馈的透明区;  (4)对光栅周期进行适当啁啾。引进2/4相移和不对称端面反射率两种方法较可行且有效。虽然1/4相移方法在工艺上有一

5、定难度,但是能获得性能很好的动态单纵模。DFB激光器的特点与一般F—P腔激光器相比,DFB激光器具有以下两大优点,因而在目前的光纤通信系统中得到广泛应用。(1)动态单纵模窄线宽输出由于DFB激光器中光栅的栅距(A)很小,形成一个微型谐振腔,对波长具有良好的选择性,使主模和边模的阈值增益相对较大,从而得到比F—P腔激光器窄很多的线宽,并能保持动态单纵模输出。(2)波长稳定性好由于DFB激光器内的光栅有助于锁定给定的波长,其温度漂移约为0.8Å/℃,比F—P腔激光器要好得多。尽管DFB激光器有很多优点,但并非尽善

6、尽美。例如,为了制作光栅,DFB激光器需要复杂的二次外延生长工艺,在制造出光栅沟槽之后由于二次外延的回熔,可能吃掉已形成的光栅,致使光栅变得残缺不全,导致谐振腔内的散射损耗增加,从而使激光器的内量子效率降低。此外,DFB激光器的震荡频率偏离Bragg频率,故其阈值增益较高。DFB激光器的发展方向是,更宽的谐调范围和更窄的线宽,在一个DFB激光器集成两个独立的光栅,实现更宽的波长谐调范围,比如达到100nm谐调范围,以及更窄的光谱线宽。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。