生物工程生物技术专业英语课文翻译完整版.doc

生物工程生物技术专业英语课文翻译完整版.doc

ID:56278377

大小:291.50 KB

页数:101页

时间:2020-06-05

生物工程生物技术专业英语课文翻译完整版.doc_第1页
生物工程生物技术专业英语课文翻译完整版.doc_第2页
生物工程生物技术专业英语课文翻译完整版.doc_第3页
生物工程生物技术专业英语课文翻译完整版.doc_第4页
生物工程生物技术专业英语课文翻译完整版.doc_第5页
资源描述:

《生物工程生物技术专业英语课文翻译完整版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章生长与代谢的生物化学2.1前言一个微生物以生产另一个微生物为目的。在某些情况下,利用微生物的生物学家们希望这样的情况能够快速频繁的发生。在另外一些产物不是生物体自身的情况下,生物学家必须对它进行操纵使微生物的目标发生变化,这样以来,微生物就要努力的挣脱对它们繁殖能力的限制,生产出生物学家希望得到的产物。生物体的生长过程及其生产出的各种产物与微生物代谢的本质特点是密不可分的。代谢过程是两种互相紧密联系又以相反方向进行的活动过程。合成代谢过程主要是细胞物质的生成,不仅包括构成细胞的主要组成物质(蛋白质、核酸、脂质、碳水化

2、合物等等),同时也包括它们的前提物质——氨基酸、嘌呤与嘧啶、脂肪酸、各种糖与糖苷。合成代谢不是自发进行的,必须由能量所推动,对大多数微生物来说,是通过一系列的产能分解代谢过程来供给能量。碳水化合物分解为CO2和水的过程是最为常见的分解代谢反应,然而微生物以这样的方式还能够利用更大范围的还原性含碳化合物。分解代谢与合成代谢所有微生物生物化学的基础,可以从两者的平衡关系或者分别对它们进行讨论。实际中,我们要有效的区分那些需要空气中的氧进行需氧代谢的生物与那些进行厌氧代谢的生物。还原性含碳化合物与O2反应生成水和CO2,这是一个

3、高效的放热反应过程。因此,一个进行需氧代谢的生物要使用一小部分底物进行分解代谢以维持某一水平的合成代谢,即成长过程。对于厌氧型生物,其底物的转化的过程基本上是一个不匀称的反应(氧化还原反应),产生很少的能量,因此,大部分底物都要被分解从而维持一定水平的合成代谢。在生物体中这种差别能够明显的体现出来,比如酵母,它属于兼性厌氧生物,即它可在有氧条件下生长也可在无氧环境下生存。需氧酵母使糖以同样的速度转化为CO2和水,相对产生高产量的新酵母。而厌氧条件下,酵母菌生长缓慢,此时酵母被有效的转化为酒精和CO2。2.2代谢与能量分解代

4、谢与合成代谢间的有效联系在于,各种分解代谢过程促进少量反应物的合成,而后又被用来促进全面的合成代谢反应。在这种重要的中间产物中,其中最为重要的是ATP,其含有生物学家所说的“高能键”。在ATP分子中,酐与焦磷酸残基相联。高能键在水解过程中所产生的热量就被用来克服在其形成过程中需要摄入的能量。像ATP这类分子,为细胞提供了流通能量,当将ATP用于生物合成反应时,其水解产物为ADP(腺苷二磷酸)或者某些时候为AMP(腺苷一磷酸):(反应式)仍含有一个高能键的ADP通过腺苷酸激酶反应也可生成ATP:(反应式)。磷酸化作用是生物体

5、中普遍的反应,通常由ATP作用而发生。经过磷酸化生成的物质通常比最初的化合物更具有反应活性,用无机磷酸进行磷酸化反应是无法进行的,因为,平衡反应式的相反方向生成大量的水(55M)。ATP+0.5ADPATP+ADP+AMP细胞的“能量状态”认为是由占有优势的组分:ATP、ADP、AMP作用形成的。为了给出一个量值,DanielAtksirson提出了“能荷”这个概念,定义一个细胞的能荷为:在“满荷”细胞中,仅含有ATP一种腺嘌呤核苷酸,它的能荷值定义为1.0。如果三种核苷酸的量相等,即ATP=ADP=AMP,则细胞的能荷为

6、0.5。与所有的习惯用法相同,能荷概念的使用是有限制的,没有人能够确定假如一个细胞的能荷是0.7而不是0.8或者0.6到底是什么意思。这个概念没有考虑细胞中核苷酸的确切数量,也没有表明对于单体酶和ATP与其镁复合物之间的显著差别。它也无法解释细菌、酵母菌与霉菌中能荷值的差异。尽管如此,这个概念对于给定的细胞类型如生长期细胞中随后的能量与酶活性的改变来讲是有所帮助的。当细胞迅速生长时,能荷处于最低值;ATP以它重新合成的最快速度被消耗,在生长末期,生长速度开始变慢,相对于ADP和AMP,ATP组分开始增大,因此,能荷值开始增

7、大,当细胞停止生长时,所有的ADP和AMP都已经转化为ATP,此时能荷值达到最大。2.3分解代谢途径尽管微生物可以利用不同的含碳化合物进行生长,但我们主要关心的是葡萄糖的代谢,鉴于乙醇(和其它C2化合物)、烃和脂肪酸、甲烷和甲醇这些物质的不断增长的重要的经济价值。2.3.1葡萄糖和其它糖几乎在所有的生命细胞中,最重要的两种糖代谢途径是二磷酸己糖途径与一磷酸己糖途径,它们常常同时发生,为合成代谢过程提供重要的联系,它们之间的相互作用受关键控制机制的支配。二磷酸己糖途径(常被称为恩伯纳-迈耶霍夫或者糖酵解途径)如图2.2所示。

8、这个过程将葡萄糖转化为丙酮酸,碳原子数量无变化,还原2分子NAD+辅酶生成2分子ATP。生成的丙酮酸是合成代谢重要的前提物质的来源,在好氧有机体中,它还是氧化还原反应的底物,而在厌氧有机体中,丙酮酸或者它转化的产物是NADH的氧化剂。一磷酸己糖途径即磷酸戊糖途径如图2.4。作为氧化过程,它将葡萄糖转化为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。