信号的频域分析方法.doc

信号的频域分析方法.doc

ID:59777552

大小:54.91 KB

页数:5页

时间:2020-11-23

信号的频域分析方法.doc_第1页
信号的频域分析方法.doc_第2页
信号的频域分析方法.doc_第3页
信号的频域分析方法.doc_第4页
信号的频域分析方法.doc_第5页
资源描述:

《信号的频域分析方法.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、频域分析  频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。  对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数,非周期信号靠傅立叶变换。举例  一个频域分析的简例可以通过图1:一个简单线性过程中小孩的玩具来加以说明。该

2、线性系统包含一个用手柄安装的弹簧来悬挂的重物。小孩通过上下移动手柄来控制重物的位置。  任何玩过这种游戏的人都知道,如果或多或少以一种正弦波的方式来移动手柄,那么,重物也会以相同的频率开始振荡,尽管此时重物的振荡与手柄的移动并不同步。只有在弹簧无法充分伸长的情况下,重物与弹簧会同步运动且以相对较低的频率动作。  随着频率愈来愈高,重物振荡的相位可能更加超前于手柄的相位,也可能更加滞后。在过程对象的固有频率点上,重物振荡的高度将达到最高。过程对象的固有频率是由重物的质量及弹簧的强度系数来决定的。  当输入频率越来越大于过程对象的固有频率时,重

3、物振荡的幅度将趋于减少,相位将更加滞后(换言之,重物振荡的幅度将越来越少,而其相位滞后将越来越大)。在极高频的情况下,重物仅仅轻微移动,而与手柄的运动方向恰恰相反。Bode图  所有的线性过程对象都表现出类似的特性。这些过程对象均将正弦波的输入转换为同频率的正弦波的输出,不同的是,输出与输入的振幅和相位有所改变。振幅和相位的变化量的大小取决于过程对象的相位滞后与增益大小。增益可以定义为“经由过程对象放大后,输出正弦波振幅与输入正弦波振幅之间的比例系数”,而相位滞后可以定义为“输出正弦波与输入正弦波相比较,输出信号滞后的度数”。  与稳态增益

4、K值不同的是,“过程对象的增益和相位滞后”将依据于输入正弦波信号的频率而改变。在上例中,弹簧-重物对象不会大幅度的改变低频正弦波输入信号的振幅。这就是说,该对象仅有一个低频增益系数。当信号频率靠近过程对象的固有频率时,由于其输出信号的振幅要大于输入信号的振幅,因此,其增益系数要大于上述低频下的系数。而当上例中的玩具被快速摇动时,由于重物几乎无法起振,因此该过程对象的高频增益可以认为是零。  过程对象的相位滞后是一个例外的因素。由于当手柄移动得非常慢时,重物与手柄同步振荡,所以,在以上的例子中,相位滞后从接近于零的低频段输入信号就开始了。在高

5、频输入信号时,相位滞后为“-180度”,也就是重物与手柄以相反的方向运动(因此,我们常常用‘滞后180度’来描述这类两者反向运动的状况)。  Bode图谱表现出弹簧-重物对象在0.01-100弧度/秒的频率范围内,系统增益与相位滞后的完整频谱图。这是Bode图谱的一个例子,该图谱是由贝尔实验室的HendrickBode于1940s年代发明的一种图形化的分析工具。利用该工具可以判断出,当以某一特定频率的正弦波输入信号来驱动过程对象时,其对应的输出信号的振动幅度和相位。欲获取输出信号的振幅,仅仅需要将输入信号的振幅乘以“Bode图中该频率对应的

6、增益系数”。欲获取输出信号的相位,仅仅需要将输入信号的相位加上“Bode图中该频率对应的相位滞后值”。傅立叶定理  在过程对象的Bode图中表现出来的增益系数和相位滞后值,反映了系统的非常确定的特征,对于一个有丰富经验的控制工程师而言,该图谱将其需要知道的、有关过程对象的一切特性都准确无误的告诉了他。由此,控制工程师运用此工具,不仅可以预测“系统未来对于正弦波的控制作用所产生的系统响应”,而且能够知道“系统对任何控制作用所产生的系统响应”。  傅立叶定理使得以上的分析成为可能,该定理表明任何连续测量的时序或信号,都可以表示为不同频率的正弦波

7、信号的无限叠加。数学家傅立叶在1822年证明了这个著名的定理,并创造了为大家熟知的、被称之为傅立叶变换的算法,该算法利用直接测量到的原始信号,以累加方式来计算不同正弦波信号的频率、振幅和相位。  从理论上说,傅立叶变换和Bode图可以结合在一起使用,用以预测当线性过程对象受到控制作用的时序影响时产生的反应。详见以下:  1)利用傅立叶变换这一数学方法,把提供给过程对象的控制作用,从理论上分解为不同的正弦波的信号组成或者频谱。  2)利用Bode图可以判断出,每种正弦波信号在经由过程对象时发生了那些变化。换言之,在该图上可以找到正弦波在每种频

8、率下的振幅和相位的改变。  3)反之,利用反傅立叶变换这一方法,又可以将每个单独改变的正弦波信号转换成一个信号。  既然反傅立叶变换从本质上说,也是一种累加处理,那么过程对象的线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。