随机变量的数字特征1教学文案.ppt

随机变量的数字特征1教学文案.ppt

ID:59941073

大小:906.50 KB

页数:34页

时间:2020-11-28

随机变量的数字特征1教学文案.ppt_第1页
随机变量的数字特征1教学文案.ppt_第2页
随机变量的数字特征1教学文案.ppt_第3页
随机变量的数字特征1教学文案.ppt_第4页
随机变量的数字特征1教学文案.ppt_第5页
资源描述:

《随机变量的数字特征1教学文案.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、随机变量的数字特征1第一节随机变量的数学期望例1某工厂生产一批产品,一等品占50%,二等品占40%,次品占10%。如果生产一件次品,工厂要损失1元钱,生产一件一等品,工厂获得2元钱的利润,生产一件二等品,工厂获得1元钱的利润。假设生产了大量这样的产品,问工厂每件产品获得的期望利润是多少?设X表示每件产品获得的利润,则它是随机变量,其概率分布为解:解:假设工厂一共生产了N件产品,其中一等品n1件,二等品n2件,次品n3件这N件产品获得的平均利润为或者写为而在大量重复试验下当N无限增大时,频率的稳定值即为概率,因此,每件产品的平均利润将趋近于或者说,如果工厂生产了大量该产品,可期望

2、每件产品获得1.3元的利润。数值1.3称为随机变量X的数学期望或均值。一、离散型随机变量的数学期望第一节随机变量的数学期望定义设离散型随机变量的概率分布为:若绝对收敛,则称为随机变量的数学期望或均值,记为,即注:度量了随机变量取值的加权平均!为权重!第一节随机变量的数学期望例甲乙二人射击,X:甲击中的环数;Y:乙击中的环数。他们命中环数的分布律分别为试问哪一个人的射击水平较高?二、连续型随机变量的数学期望定义设离散型随机变量的概率分布为:若,则称为随机变量的数学期望或均值。离散连续概率密度函数定义设随机变量的密度函数为,若绝对收敛,则称为随机变量的数学期望或均值,记为例3.3设

3、随机变量的密度函数为求的数学期望。解由连续型随机变量数学期望的定义,有三、随机变量函数的数学期望定理设为随机变量,为实函数,为求的数学期望,可以不必通过求的概率分布(离散)或密度函数(连续),而只需直接利用的概率分布或密度函数。若绝对收敛,则存在,且(1)设为离散型随机变量,概率分布为(2)设为连续型随机变量,密度函数为,若则存在,且绝对收敛,解解例3.4设随机变量的概率分布为求例3.5对例3.3中的随机变量,求四、数学期望的性质(1)若,则,特别地(3)(2)(4)第二节随机变量的方差有可能产品的寿命均集中在950~1050小时!有可能一半产品的寿命集中在700小时,另一半产

4、品的寿命集中在1300小时!对随机变量,知道了它的数学期望,虽然对该随机变量有了一定的了解,但还不够!例:为评估一批灯泡的质量好坏,从某种途径已知其平均寿命为1000小时,即,但不能完全肯定质量的好坏!质量稳定!质量相对不稳定!有必要找一个量,能够度量随机变量相对于的偏离程度。什么量,能够度量随机变量相对于的偏离程度?不能!是随机变量不能!(正负偏差相互抵消)不便于计算!定义设随机变量的数学期望为,则称为随机变量的方差,记为,或,并称为的标准差。方差的计算:考虑到方差实际上为随机变量函数的数学期望:,因此若为离散型随机变量,概率分布为,则若为连续型随机变量,概率密度函数为,则在

5、很多场合,计算方差经常用到如下公式:方差的性质:(1)(2)(3)例3.6设随机变量的密度函数为解由例3.3的结果,求的方差例3.7对任意随机变量,设,令,求解称为的标准化,它是一个无量纲的随机变量,将原分布中心移至原点,且方差为1个单位。证例3.8对随机变量,设存在,令,证明当时,达到最小值,且最小值为因此当时,达到最小值,且最小值为第三节常用分布的数学期望和方差一、常用离散型分布的数学期望和方差退化分布:离散型随机变量只取常数,即,2.0-1分布:离散型随机变量的概率分布为因此因此3.个点上的均匀分布:4.二项分布:离散型随机变量的概率分布为,即离散型随机变量的概率分布为因

6、此则5.几何分布:随机变量的概率分布为6.超几何分布:随机变量的概率分布为(证明略)7.泊松分布:随机变量的概率分布为二、常用连续型分布的数学期望和方差均匀分布:密度函数为连续型随机变量服从区间上的均匀分布,则而从而2.指数分布:连续型随机变量服从参数为的指数分布,密度函数为则而从而3.正态分布:则数学期望为随机变量,其密度函数为(令)方差为(令)常用离散型分布的数学期望和方差分布名称概率分布数学期望方差退化分布0-1分布个点的均匀分布二项分布几何分布超几何分布泊松分布常用连续型分布的数学期望和方差分布名称密度函数数学期望方差均匀分布指数分布正态分布第四节随机变量的矩和切比雪夫

7、不等式一、矩矩是数学期望和方差的推广,在数理统计中有重要应用。定义:对随机变量,设为正整数,如果存在即为数学期望。即为方差。定义:对随机变量,设为正整数,如果存在,则称为的阶中心矩。(即),则称为的阶原点矩。矩的计算:则(1)若为离散型随机变量,概率分布为(2)若为连续型随机变量,密度函数为,则二、切比雪夫不等式定理:对随机变量,设均存在,则对任意,有或者切比雪夫不等式切比雪夫不等式给出了随机变量对其数学期望绝对偏差的概率的估计。不等式表明,越小,事件的概率越小,这表明方差用来刻画随机变量的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。