第7章可编程逻辑器件.pptx

第7章可编程逻辑器件.pptx

ID:62740469

大小:2.97 MB

页数:145页

时间:2021-05-21

第7章可编程逻辑器件.pptx_第1页
第7章可编程逻辑器件.pptx_第2页
第7章可编程逻辑器件.pptx_第3页
第7章可编程逻辑器件.pptx_第4页
第7章可编程逻辑器件.pptx_第5页
资源描述:

《第7章可编程逻辑器件.pptx》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第七章可编程逻辑器件7.1概述7.2可编程逻辑器件基础PLD逻辑表示法逻辑阵列的PLD表示法应用举例7.3通用阵列逻辑GAL7.1概述PLD出现的背景电路集成度不断提高SSIMSILSIVLSI计算机技术的发展使EDA技术得到广泛应用设计方法的发展自下而上自上而下用户需要设计自己需要的专用电路专用集成电路(ASIC-ApplicationSpecificIntegratedCircuits)开发周期长,投入大,风险大可编程器件PLD:开发周期短,投入小,风险小7.1概述PLD器件的优点集成度高,可以替代多至几千块通用IC芯片极大减小电路的

2、面积,降低功耗,提高可靠性具有完善先进的开发工具提供语言、图形等设计方法,十分灵活通过仿真工具来验证设计的正确性可以反复地擦除、编程,方便设计的修改和升级灵活地定义管脚功能,减轻设计工作量,缩短系统开发时间,保密性好7.1概述PLD的发展趋势向高集成度、高速度方向进一步发展最高集成度已达到400万门向低电压和低功耗方向发展5V3.3V2.5V1.8V更低内嵌多种功能模块RAM,ROM,FIFO,DSP,CPU向数、模混合可编程方向发展7.1概述大的PLD生产厂家7.1概述可编程专用集成电路ASIC(ApplicationSpecificI

3、ntegratedCircuit)是面向用户特定用途或特定功能的大规模、超大规模集成电路。分类:按功能分为数字的、模拟的、数字和模拟混和三种。按制造方式分为全定制、半定制ASIC、可编程三种。PLD器件的分类--按集成度可编程逻辑器件(ProgrammableLogicDevice)为通用器件,分为低密度PROM,EPROM,EEPROM,PAL,PLA,GAL只能完成较小规模的逻辑电路高密度,已经有超过400万门的器件EPLD,CPLD,FPGA可用于设计大规模的数字系统集成度高,甚至可以做到SOC(SystemOnaChip)PLD器件的分类

4、--按结构特点基于与或阵列结构的器件--阵列型PROM,EEPROM,PAL,GAL,CPLDCPLD的代表芯片如:Altera的MAX系列基于门阵列结构的器件--单元型现场可编程逻辑门阵列FPGA:是集成度和结构复杂度最高的可编程ASIC。运算器、乘法器、数字滤波器、二维卷积器等具有复杂算法的逻辑单元和信号处理单元的逻辑设计可选用FPGA实现。按制造技术和编程方式进行分类熔丝或反熔丝编程器件--Actel的FPGA器件体积小,集成度高,速度高,易加密,抗干扰,耐高温只能一次编程,在设计初期阶段不灵活SRAM--大多数公司的FPGA器件可反复编程

5、,实现系统功能的动态重构每次上电需重新下载,实际应用时需外挂EEPROM用于保存程序EEPROM--大多数CPLD器件可反复编程不用每次上电重新下载,但相对速度慢,功耗较大可编程ASIC的编程方式可编程ASIC的编程方式有两种:采用专用编程器进行编程在系统编程甩掉了专用编程器,而且也不用将芯片从电路系统取下,只利用计算机和一组下载电缆就可以在系统编程。Lattice和Xilinx等几家大公司现在都有在系统可编程ASIC产品。在系统编程方式方便了用户。可编程ASIC的一般开发步骤设计输入(entry)功能模拟(functionsimulation)

6、逻辑分割(partitioning)布局和布线(placeandrouting)时间模拟(timingsimulation)写入下载数据(download)ASIC开发步骤流程图TOP—DOWN设计思想自顶向下(TOP—DOWN)设计首先是从系统级开始入手。把系统分成若干基本单元模块,然后再把作为基本单元的这些模块分成下一层的子模块。图7-2top-down设计图TOP—DOWN设计思想采用TOP—DOWN层次结构化设计方法,设计者可在一个硬件系统的不同层次的模块下进行设计。总体设计师可以在上层模块级别上对其下层模块设计者所做的设计进行行为级模拟

7、验证。在TOP—DOWN的设计过程中,划分每一个层次模块时要对目标模块做优化,在实现模块时要进行模拟仿真。虽然TOP—DOWN的设计过程是理想的,但它的缺点是得到的最小可实现的物理单元不标准,成本可能较高。BOTTOM—UP设计思想BOTTOM—UP层次结构化设计是TOP—DOWN设计的逆过程。它虽然也是从系统级开始的,即从图7-2中设计树的树根开始,但在层次模块划分时,首先考虑的是实现模块的基本物理单元是否存在,划分过程必须是从存在的基本单元出发。BOTTOM—UP设计思想设计树最末枝上的单元要么是已经制造出的单元,要么是已经开发成功的单元,或

8、者是可以买得到的单元。自底向上(BOTTOM—UP)的设计过程采用的全是标准单元,通常比较经济。但完全采用自底向上的设计有时不能完全达到

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。