Bayesian optimization of time

Bayesian optimization of time

ID:40565066

大小:819.91 KB

页数:9页

时间:2019-08-04

上传者:新起点
Bayesian optimization of time_第1页
Bayesian optimization of time_第2页
Bayesian optimization of time_第3页
Bayesian optimization of time_第4页
Bayesian optimization of time_第5页
资源描述:

《Bayesian optimization of time》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

OpinionBayesianoptimizationoftimeperception123ZhuanghuaShi,RussellM.Church,andWarrenH.Meck1DepartmentofPsychology,Ludwig-Maximilians-Universita¨tMu¨nchen,Munich,Germany2DepartmentofCognitive,Linguistic,andPsychologicalSciences,BrownUniversity,Providence,RhodeIsland,USA3DepartmentofPsychologyandNeuroscience,DukeUniversity,Durham,NorthCarolina,USAPrecisetimingiscrucialtodecision-makingandbe-theBayesianapproachtooptimizationhasprovidedmanyhavioralcontrol,yetsubjectivetimecanbeeasilyimportantinsights,exactlyhowtheseprobabilisticdistri-distortedbyvarioustemporalcontexts.Applicationbutionsandinferencesmightbelinkedtotemporalproces-ofaBayesianframeworktovariousformsofcontex-singatamechanisticlevelremainsuncertain.tualcalibrationrevealsthat,contrarytopopularbelief,Inthisarticle,wereviewrecentprogressinunderstand-contextualbiasesintiminghelptooptimizeoverallingtheinfluenceofcontextualcalibrationonintervalperformanceundernoisyconditions.Here,wereviewtiming,withparticularfocuson‘central-tendency’andrecentprogressinunderstandingtheseformsoftem-‘modality’effects,aswellasthetime-ordererror(TOE).poralcalibration,andintegrateaBayesianframeworkWethencomparethedifferentexplanationsforcontextualwithinformation-processingmodelsoftiming.WecalibrationmadebyBayesianinferenceandtraditionalshowthattheessentialcomponentsofaBayesianinformation-processingmodelsofintervaltiming.Finally,frameworkarecloselyrelatedtotheclock,memory,weprovidearoadmapforintegratingaBayesianframe-anddecisionstagesusedbythesemodels,andthatworkwithexistingtimingmodelsandpointouttheimpli-suchanintegratedframeworkoffersanewperspectivecationsandpotentialchallengesassociatedwiththisondistortionsintimingandtimeperceptionthatareapproach.otherwisedifficulttoexplain.ContextualcalibrationoftimeperceptionIntroductionAsnotedabove,subjectivedurationscaneasilybedis-Humansareoftensurprisinglyaccurateattiminginter-tortedbyvariouscontextualfactors.Aclassicexampleofvalsinthesub-secondtominutesrangeduringdailycontextualcalibrationisVierordt’slaw[15],alsoknownroutines,aswellaspartofvocationalandrecreationalasthe‘central-tendency’effect.Whenparticipantsareactivities[1].Wemustjudgethecorrecttimetostrikethepresentedwitharangeofstimulusdurationsandarerightmusicalchord,adjustourrunningspeedtobeinthethenaskedtoreproducethosedurations,theytendtorightplaceattherighttimetocatchaflyball,andantici-overproduce‘short’durationsandunderproduce‘long’patewhentobeginpressingthebuttontoopenthedoordurations.This‘central-tendency’effecthasbeenwhenthesubwaytraincomestoastop.However,ourdemonstratedinnumerousstudies(forreviews,seesubjectiveexperienceoftimecanbehighlybiasedin[10,15]).Acommonexplanationofthiseffectisthatdifferentcontexts[2–8].Forexample,soundsareoftendurationjudgmentsarederivednotonlyfromcurrentjudgedlongerthanlights,evenwhentheyarebothofsensoryinputs,butarealsoinfluencedbytheacquiredthesamephysicaldurationandhavebeenmatchedforstatistics(e.g.,meanandstandarddeviation)oftheintensity[8].Traditionaltimingmodelssuggestthatthesedistributionofpreviouslyexperiencedstimulusdura-contextualeffectsareassociatedwiththedifferentialdecaytions[5,6,8–10,15].ofmodality-specificrepresentations,changesinthespeedInterestingly,the‘central-tendency’effecthasbeenob-ofthe‘internalclock’,and/or‘memorymixing’ofdifferentservedtovaryacrossdifferentgroupsofindividualswithtemporalrepresentations[5,8–10].Recently,researchersvariouslevelsofexperience,includingmusicalexpertise.haveusedBayesianinferencetoperformcomputational-Forexample,althoughindividualswithlittleornomusicallevelanalysisonvariousformsofcontextualcalibrationoftrainingexhibitthe‘central-tendency’effectforbothaudi-intervaltimingandrevealedthatsuchadaptationmaytoryandvisualstimuli,stringmusiciansshowverylowhelptoimproveoverallperformance[6,11–14].Althoughbiasesforauditorydurationreproduction.Moreover,ex-pertdrummersareabletoreproducebothauditoryandCorrespondingauthor:Meck,W.H.(meck@psych.duke.edu).Keywords:visualdurationsnearperfection[16].IncontrasttohealthyBayesianinference;Vierordt’slaw;contextualcalibration;modalitydifferences;memorymixing;scalartimingtheory.individuals,patientswithParkinson’sdisease(PD)are1364-6613/$–seefrontmattermorepronetocontextualmanipulationwhentestedoffß2013ElsevierLtd.Allrightsreserved.http://dx.doi.org/10.1016/j.tics.2013.09.009oftheirdopaminergicmedication,referredtoasatemporal‘migration’effect[17].WhenPDpatientsgivendopamine-replacementtherapy(e.g.,L-dopa+apomorphine)aretrainedtotime-specificstimulusdurations(e.g.,8sand556TrendsinCognitiveSciences,November2013,Vol.17,No.11 OpinionTrendsinCognitiveSciencesNovember2013,Vol.17,No.1121svisualstimuli)usingcorrectivefeedback,theyareable(A)0.2toKey:reproducethesestimulusdurationswiththesameaccuracyandprecisionasage-matchedcontrols.However,8sONwhen0.158sOFFthesesamePDpatientsaretestedoffoftheirmedi-cation,21sONastrong‘central-tendency’effectemerges,evenifcorrective21sOFFfeedbackisgiven.Undertheseconditions,the0.18sdurationisoverproducedandthe21sdurationisunderproducedwhenbothdurationsarepresentedwithinthesamesession,butnotwhentheyarepresentedin0.05separateMeanrelavefrequencysessions(Figure1A).Asecondexampleofcontextualdependenceisassoci-ated0withthepresentationorderoftwoormoredura-05101520253035tions,referredtoasthetime-ordererror(TOE)[4,18,19].Realme(s)Inthiscase,theorderofpresentationcanbiasthethresholdfordeterminingwhetherastimulusisshorter(B)25orKey:longerthantheprecedingduration[19]andchangethesensitivityofthedurationjudgment[18,20,21].TheONbiasesOFFinthethresholdcanbepositiveornegative20dependingonvariousexperimentalfactors,suchastherelativelengthsofthedurationsbeingcomparedand15theinter-stimulusintervals[19,22].Ameta-analysis[18]hasrevealedthatthesensitivityofdurationjudg-mentsisoftenworsewhenthecomparisondurationisSubjecveme(s)10presentedpriortothestandardduration,comparedtothereverseorder.TheusualexplanationfortheTOEissimilartoaccountsproposedforthe‘central-tendency’5effect,510152025namely,participantsadapttotheaveragestimu-lusdurationusedwithinanexperimentalsetting,there-Realme(s)bycausingtheperceiveddurationofthefirststimulusto‘gravitate’(C)towardthisremotestandard[23].Itisimpor-Key:tanttonote,however,that‘gravitationtothemean’doesPriornotrequirealargenumberoftrials,thatis,animmedi-Likelihood21sONatelyprecedingorsucceedingdistractorintervalissuffi-Posteriorcientforparticipantsto‘assimilate’comparedstimulusdurations[13,24].Anotherformofcontextualcalibrationistheclassicfindingthat‘soundsarejudgedlongerthanlights’[25].Whenauditoryandvisualstimuliareintermixedwithin21sOFFasession,participantsfrequentlyoverestimateauditorystimuliandunderestimatevisualstimuliofequivalentphysicaldurations[8,25–32].This‘modality’effectalsooccursforsimultaneouslypresentedmultimodaldura-51015202530tions[12,14,33–35].Forinstance,whendifferentaudito-ryRealme(s)andvisualstimuliarepresentedtogetherinanaudiovisualTRENDSinCognitiveSciencestemporalbisectiontask,theperceivedaudiovisualdurationappearstobeanintegratedesti-Figure1.Illustrationofthe‘migration’effectintemporalreproductionsofmateoftwodurationswithdominancebytheauditoryParkinson’sdisease(PD)patients.(A)Relativefrequencydistributionsforthestimulustwotargetdurations(8and21s)plottedasafunctionofthemedicationstates.The[14].peakfunctionsillustrateaccuracyandprecisionofdurationreproductioninPDpatientsONandOFFtheirdopaminergicmedication.IntheONmedicationstate,Traditionalapproachestocontextualcalibrationtheiraccuracyandprecisionarecomparabletoage-matchedcontrols.However,inAtheOFFmedicationstate,astrongcentral‘migration’effectemergesasindicatedwell-knownquantitativemodelthataddressescontex-byshiftsofthepeakfunctions.Adapted,withpermission,from[17].(B)Thetualinfluencesonperceptionistheadaptation-level(AL)subjectivepeaktimeplottedagainsttherealtimeasafunctionofthemedicationtheoryproposedbyHelson[36].Accordingtothistheory,states.IntheOFFmedicationstate,thepeaktimesarebiasedtowardstheasubjectivecenterofthedistributionofdurationsignals.Thedashedlineindicatesperceptofastimulusdependsonthebackgroundthecontext.estimateofthesubjectivecenterbasedonthesimplelinear-weightedaverageForexample,theperceivedluminanceofanmodelobject(Equation1).(C)SchematicillustrationofhowBayesianinferencemightbeissubjecttothesurroundingluminance.HelsonappliedfortheONandOFFstatesin21sdurationreproduction.ThewithdrawalofquantitativelythedopaminergicmedicationintheOFFstatemayincreaseuncertaintyinthedescribesthebackgroundcontextasthesensorypooledlikelihood.Thus,theunchangedpriorgainsmoreweightinthefinaleffectofallstimuli(i.e.,adaptationlevel).Aestimate,andtheposteriorshiftstowardstheprior.modifiedversionofALtheoryhasbeenusedtoexplainbiasesandsensitivitychangesinducedbythetemporalorderofpresentation[18,19].Inasimplifiedexample,557 OpinionTrendsinCognitiveSciencesNovember2013,Vol.17,No.11theperceivedsubjectiveintervaldˆisalinearweightedscalarproperty[38,39,41],allowingviolationsofthescalaraverageofthesensoryevidenceandcontext:propertytoserveasanindicatorofcontextualinfluencesontimingandtemporalmemory.Thisleadstothe‘memo-dˆ¼ð1wÞsþwdp;[1]ry-mixing’accountofmodalitydifferences[8–10],whichwheresuggeststhatcontextualcalibrationarisesfromthemixingsistherescaled(e.g.,logarithmic)valueoftheisofauditoryandvisualdurationswithinasharedmemorystimulusduration,dpthesubjectiveexpectancyofstim-ulusdistribution.Thisaccountassumesthatauditorystimulidurations,andwistheempiricallydeterminedweightingdrivetheclockstage(composedofapacemaker,switch,constantthatcanbeeitherpositiveornegative.isandaccumulator)atafasterratethanvisualstimuliand,Whentheweightwoftheinternalexpectancydpposi-tive,asaconsequence,theclockreadingstransferredintotheperceiveddurationdˆisattractedtowardthecentermemoryareproportionallylongerforauditorystimulithanofthedistribution.Thus,thesimple‘weightedaverage’forvisualstimuli.Consequently,whenthecurrentclockmodelalsopredictsVierordt’slawfordurationdiscrimination.readingiscomparedtoamemorysampleretrievedfromFigure1Bshowshowthislinear-weightedmodelthis‘mixed’distribution,clockreadingsforauditorysti-couldexplainthe‘migration’effectforthereproduc-tionmuliwillbejudged(onaverage)tobelongerandvisualofstimulusdurationsobservedinPDpatientswhentestedstimuli(onaverage)willbejudgedtobeshorterthantheoffoftheirdopaminergicmedication.Scalarmeanofthe‘mixed’distribution.Ifauditoryclockreadingstimingtheorywithitsclock,memory,anddeci-sionarecomparedonlywithauditorymemoriesandvisualstagesisthemostcommonheuristicusedtodescribetheclockreadingsarecomparedonlywithvisualmemories,cognitiveprocessesinvolvedinthecontextualcalibra-tionnomodalitydifferencesconsistentwithchangesinclockofdurationdiscrimination[5,8–10,37–40].Thehall-markspeedshouldbeobserved[8].Anexampleofthe‘modality’ofthismodelisthatthestandarddeviationoftemporaleffectintemporalbisectionisillustratedinFigure2A,estimatesincreaseslinearlywiththemeanofthewherethe‘short’(S)and‘long’(L)anchordurationsconsistdurationbeingestimated–whichisreferredtoasthescalarofbothauditoryandvisualstimuli,andintermediateproperty(Box1).ScalartimingtheorytypicallyassumescomparisondurationsofbothmodalitiesarerandomlythatamemorytranslationprocessinducestheBox1.Information-processing(IP)modelsofintervaltimingandthescalarpropertyOneofthebest-developedmodelsofintervaltimingisscalartimingtheory,whichbelongstoaclassofinformation-processingmodels(A)thatpositadedicated‘internalclock’[5,37–40,77].Accordingtoscalartimingtheory,thecognitiveprocessessupportingintervaltimingconsistofthreestages:clock,memory,anddecision(FigureI,Box2).Inordertorepresentatargetduration,apacemakeremits‘L’pulsesσlthatarepassedbyaswitchintoanaccumulator.Thevalueintheaccumulatorisassumedtobenormallydistributed[60],whichisthencomparedtotheexpectedtimesampledfromreference‘M’σmSubjecvemememory.Ifthesevaluesarecloseenoughatthedecisionstage,aresponse‘S’σsismade.Whentheentireresponsefunctionobtainedfrompeak-interval/temporalgeneralizationproceduresisplottedonarelativetimescaleformultipletargetdurations,thedifferentSMLresponsefunctionstypicallysuperimposewitheachother,whichRealmedemonstratesthatintervaltimingadheresstronglytoWeber’slaw[38,41,85–88].Thisiscalledthescalarpropertyofintervaltiming.Evidence(B)300forsuperimpositioninthepeak-intervalprocedureisillustrated1inFigureIforhumanparticipants.ScalartimingtheoryKey:assumesthescalarpropertyisintroducedbyamemorytranslation0.58sconstantk*[60,61,64–66],becausevariancesintheclockand12s2000decisionstagesareconsideredinsufficienttoaccountforthescalar00.511.5221sRelavemeproperty([38,39,41],butsee[54,77]).Thememorytranslationconstantk*isdrawnfromanormaldistributionN(mk*,sk*),suchthatthismultiplicationresultsinwidermemorydistributionsfor100longerdurationsthanforshortertargetdurations(FigureI).ResponsesperminuteSystematicviolationsofthescalarpropertycanoccurwhentimedintervalsareselectedfromparticularrangesortestedwithselected0clinicalpopulations(e.g.,PDpatients)[78,86,89,90].Theseviolations010203040ofthescalarpropertysuggestthatmultipletimingsystemsmayTime(s)subservedifferenttimescalesandthatcontextualinfluencesshouldTRENDSinCognitiveSciencesbeconsideredmorecarefullyintheoreticalmodelsoftimingandtimeperception.FigureI.Thescalarpropertyofintervaltimingandevidenceofsuperimpositionofpeak–intervalfunctions.(A)Scalartimingtheoryassumesthattheestimationerrorincreasesinproportiontothetargetinterval(grayarea),whichleadstothescalarpropertybeingexhibitedfor‘short’(S),‘medium’(M),and‘long’(L)targetdurations.(B)Evidenceofthescalarpropertyfromhumanparticipants.Meankeypressesperminuteareplottedasafunctionofsignalduration(s)forparticipantstrainedwith8,12,and21stargetdurations.Theinsetfigureshowsthattheresponsefunctionssuperimposeoneachotherwhentheyareplottedasafunctionofrelativetime.Adapted,withpermission,from[91].558 OpinionTrendsinCognitiveSciencesNovember2013,Vol.17,No.11(A)1ofdynamicupdatingofinternalreferents,In¼gIn1þð1gÞX1n;[2]0.75whereIisthedynamichistoryoftheinternalreferenceforthefirstintervalandX1nisthecurrentfirstinterval.WhenthesensoryestimateofthecurrentfirstintervalX1n0.5ispresented,themeanintervalreferenceInisthenp(‘long’)updated.Key:Intheseapproaches,theweightsofpriorhistoryandfeedbackareestimatedbyfittingagenerallinear0.25Auditorymodel,whichdoesnotindicatewhetherthesystemusesVisualanoptimalstrategyfordynamicupdating.Nevertheless,0whenEquation2combineswithBayesianinference,itis2345678referredtoastheapplicationofaKalmanfilter[43–45].Realme(s)TheginEquation2isreferredtoas‘Kalmangain’,whichisoptimallydeterminedandupdateddynamicallybythe(B)variancesoftheinternalreferenceandthesensoryesti-Key:mate.TheapplicationofaKalmanfilterhasbeensup-AuditoryportedbyanumberofempiricalstudiesthatexaminedtheVisual‘central-tendency’effectofdistancereproduction[43,46],sensorimotorcontrol[45],andmultimodalrecalibration[44,47].MaMavBayesianinferenceontemporalcontextualcalibrationMSubjecvemevThecombinationofalinear-weightedaveragemodelandscalartimingtheoryprovidesapowerfulapproachtoexplainvarious‘memory-mixing’phenomena[5,8–10,18],yettheseapproachesdonotinformusastowhatfactor(s)SPSEPSELquantitativelyavdeterminethelevelofcontextualcalibra-Realme(s)tion.RecentworkusingaBayesianapproachsolvesthisproblembyprovidingaquantitativepredictionoftheTRENDSinCognitiveSciencescontributionoftemporalcontextandthemechanismsthatFigure2.Illustrationofthe‘modality’effectintemporalbisection.(A)Groupinvolveprobabilitythesubjectiverepresentationofduration[6,16,48–ofa‘long’response,p(‘long’)functionsaveragedacrossparticipants51]for(Box2).ThebasiclogicoftheBayesianapproachisthatauditoryandvisualstimulusdurationspresentedina2svs8sbisectiontask.Adapted,withpermission,from[42].(B)SchematicillustrationforaBayesiansensorymeasurementsarenoisyanduncertain,andcom-inferenceaccountofthe‘modality’effectinwhichpulsesareintegratedatafasterbiningratethepriorknowledgeofthestatisticaldistributionofforauditorystimulithanforvisualstimuliduetodifferentialratesofopeningaandseriesofstimulusdurationscanbebeneficialforincreas-closingoftheswitchthatallowspulsestoflowfromthepacemakertotheaccumulator[8,9].Asaconsequence,theinternalreferenceofthemeandurationingtheprecisionofdurationestimates,althoughincorpo-betweenthe‘short’(S)and‘long’(L)anchordurationsislargerforauditorystimulirating(M)thepriormayleadtosystematicbiases.Inthisathanforvisualstimuli(Mv).Thesedifferentinternalrepresentationssense,correspondcontextualeffectsarestatisticallyoptimalandservetothesameexternaldurationindicatedbythemiddleverticaldashedline.Whentheauditoryandvisualdurationsarecombinedormixedtominimizeerror.Moreover,thetrade-offbetweenpreci-withinthesamememorydistribution,assumingthatMaandMvareindependentsionGaussians,andbiaswilldependonthemagnitudeofuncertaintytheinternalreferenceofthemixeddurations(Mav)isalinear-weightedandaveragetheselectedcostfunction[48].ofMaandMv.Basedonthismixedreference,theauditoryandvisualpointsofsubjectiveequality(PSE)areshiftedinoppositedirections–asindicatedAnimpressivedemonstrationofhowBayesianinferencebythefilledsquaresandcircles,respectively.canbeusedtopredictthe‘central-tendency’effectintemporalreproductionhasbeengivenbyJazayeriandShadlen[6].Intheirstudy,participantswereinstructedtoestimateasampledurationandreproduceitimmedi-intermixedatelyafterwards.Fordifferentblocksoftrials,however,withinasession[42].Asaresultofthisinter-mixingthesampledurationswereselectedfromthreedifferentofstimulusmodalities,thepointofsubjectiveequalityuniformdistributions(i.e.,‘short’,‘intermediate’,and‘long’(PSE)observedforauditorydurationsoccursatanranges)thatpartiallyoverlappedwitheachother.TheearliertimethanthePSEobservedforvisualdurations.Givenresultsrevealedastrong‘central-tendency’effectindura-thattheexternalworldisinconstantflux,themixingtionreproductionasillustratedinFigure3.JazayeriandoftemporalmemoriesislikelytoaccrueovertimeinShadlenthenusedaBayesianframeworktoshowhoworderfortheobservertoadapthis/hertimingbehavior.TaatgendifferenttypesofobservermodelswithvariationintheandVanRijn[5],forexample,foundthatthe‘central-tendency’applicationofthepriorandtheestimationerrormightbeeffectwasnotonlyinfluencedbythemixingusedindurationreproduction.Theyreportedthatthebest-ofmultipledurations,butalsofluctuatedasafunctionfittedmodelwastheoneusingaBayesleast-square(BLS)offeedbackandestimatesofthestimulusdura-tionsrule(i.e.,asquare-errorlossfunction;Box2).Thesuccessexperiencedonprevioustrials(recencyeffect).Simi-larly,oftheBLSrulesuggeststhatparticipantsusedthestatis-Dyjasetal.[18]suggestedthatTOEsassociatedwithsensitivityticalinformationprovidedbythedistributionofstimuluschangesindurationcomparisonsaretheresult559 OpinionTrendsinCognitiveSciencesNovember2013,Vol.17,No.11Box2.Bayesianinferenceoftimingandlinkagetoinformation-processingmodelsAnalogoustotheclassicinformation-processing(IP)modelsthatestimationerrorðDˆDÞ.Themostfrequentlyusedlossfunctionsinvolve2clock,memory,anddecisionstages,Bayesianinferencehasforthreemodelingbehaviorarethesquared-errorL¼DˆD[50,67],essentialcomponents:likelihood,priordistribution,andlossfunction02[45,48,92,93].AsillustratedinFigureI,twoframeworksare¼closelyorrelativesquared-errorL1D=Dˆfunctions[50,94].Thelinkedtoeachother.latterSupposeiscomparabletotheratioruleusedinclassicIPmodelstothatwehaveanexternaldurationD,withanassociatedachieveinternalthescalarproperty[38,95].clockreadingSthatrepresentsthenumberofpulsesintheWhenaccumulatorthelikelihoodandthepriorareindependentGaussians,thatattheendofD.ThelikelihoodfunctionP(SjD)istheis,probabilityP(S|D)N(ms,ss),P(D)N(mp,sp),theoptimalestimatebydistributionofobtainingaclock-readingSforagivenminimizingexternalthelossfunctionLis:durationD.Thespreadofthelikelihoodindicatestheuncertaintyofsensorymeasurement.Atthememorystage,sensorydˆ¼ð1wpÞmsþwpmp[II]estimatesofthetargetdurationupdatethepriordistributionP(D)in21=spreferencememory.Meanwhile,thepriorknowledgemayinfluencewherewp¼1=s22isproportionaltoitsinversedvariancespþ1=ss22thespssmemoryrepresentationofthecurrentclockreading.Accordingto(FigureI).Thevarianceofthisoptimalestimateiss22,whichisBayes’pþssrule,theprobabilityofhavinganexternaldurationDforathegivenminimumvarianceamongallpossiblelinearweightedcombina-clock-readingSisdeterminedbythesensorylikelihoodandthetionspriorbetweenthesensoryestimateandtheprior[92,93,96].WhenknowledgeoftargetdurationsP(D):therearetwoconditionalindependentlikelihoodfunctions,andthePðSjDÞPðDÞpriorisnotthefocusfactorandcanbeassumedtobeuniform,PðDjSÞ¼[I]PðSÞBayesianoptimizationisequivalenttomaximumlikelihoodestima-tion(MEL).TheoptimalestimateisalsoalinearweightedaverageofTheprobabilitydistributionP(DjS)isknownastheposteriorindividualprobability.sensoryestimates:Giventheposteriorprobability,theBayesianideal-dˆobserver¼wamþwbm[III]nexthastomakeanoptimaldecisionorchooseanactionabbasedwheremandmarethemeanestimatesoftwoindividualsignalonthelossfunction,afunctionthatspecifieshowtheabsystemdurations,andwandwaretheircorrespondingweightsthatareratestherelativesuccessorcostofaparticularresponseab[45,50,67],thatis,thecostsassociatedwithafunctionofproportionaltotheirinversedvariances.IPmodelBayesianinferenceμpClockstagePacemakerSwitchAccumulatorLikelihoodσsμpReferencememoryPriorσpdˆMemorystageWorkingmemoryPosteriorσdˆDecisionstageComparatorRDˆD<∈LossfunconL=(Dˆ–D)2D∼RTRENDSinCognitiveSciencesFigureI.Aninformation-processing(IP)modelofscalartimingtheoryandBayesianinferenceoftimeestimation.TheleftpanelshowsanIPmodeloftimeperceptioninvolvingclock,memory,anddecisionstages.TherightpanelillustratesthatthethreekeycomponentsofBayesianinferencearecloselymatchedtothethreestagesoftheIPmodel.Thesensorylikelihoodisderivedfromtheclockstage.Thepriorrepresentsthedurationsstoredinthereferencememory,whichisupdatedbycurrentestimates(dashedblackarrow).Theposteriorreflectstheprobabilitydistributionofthecurrentestimate,combiningtheclockreadingandtheinfluenceofthereferencememory(indicatedbythedashedredarrow).Inthedecisionstage,responsesaremadebasedonspecificcomparisonrules.ThegoalofBayesianinterferenceistominimizethelossfunction,whereasthecomparatoroftheIPmodelusesarelativediscriminationthreshold.durationspresentedwithinablockoftrialstominimizedecision-rulesusedintemporalbisectionarestillundertheiroveralltemporalreproductionerror[6].debate[52],oneproposalisthatacomparisonismadeThe‘modality’effect[8]inducedbythe‘memorymixing’betweenthecurrenttrial’sclockreadingandaninternalofauditoryandvisualsignalscanalsobequantitativelyreference(M)ofthemeanduration(e.g.,geometricmeanofmodeledusingBayesianinference.AlthoughtheexactSandL).Giventhatauditorystimulidrivetheclockfaster560 OpinionTrendsinCognitiveSciencesNovember2013,Vol.17,No.11(A)reliability(assumingMaandMvareindependentGaus-sians).WhentemporaljudgmentsaremadebasedonthismixedinternalreferenceMav,theauditoryPSEisshifted1,200earlier,whereasthevisualPSEisshiftedlaterintime.Asaresult,‘soundsarejudgedlongerthanlights’andthe1,023responsepatterncorrespondingtotheclassic‘modality’effectemergesasshowninFigure2A.OtherapplicationsofBayesianinferencetointerval847timinghaveshownhowtheassimilationofan‘entrain-ment’contextcanbeexplainedbyalinearweightedmodelKey:(EquationProduconme(ms)6711)inwhichtheweightsaredirectlyproportionalPriorcondiontothemeasuredWeberfractions[13].Thatis,theuncer-LongtaintiesIntermediateofthestimulusdurationandthebackground494contextShortdeterminetheircontributionsinthefinalestimate(Box2).SimilarBayesianapproacheshavebeen4946718471,0231,200appliedtomultimodal/sensorimotorintervalintegration[12,14,33,34].Forexample,Shiandcolleagues[12]testedSampleinterval(ms)whetherperceptualandmotortimingareintegratedinanauditoryreproductiontaskbycomparingpuremotorre-production,auditorydurationcomparison,andauditory(B)reproduction.Theyfoundthatparticipantsincorporatebothperceptualandmotortiminginanoptimalmannerintheauditoryreproductiontask.Itshouldbenoted,however,thatvariancesinsomeconditions,particularlyEsmatethoseforshort-intervalauditoryreproduction,arenotassmallasthemodel-predictedvariances,anddonotexhibittheexpectedimprovement.Interestingly,suchsuboptimalMeasurementoutcomeshavebeenconfirmedinseveralotherstudies[12,14,33–35],showingthattheobservedbehavioralvari-MeasurementPriorabilityisoftenlargerthanpredictedbythemodel[34,35].noisePosteriorLikelihoodApossiblereasonforthissuboptimalintegrationmaybethatsomeofthemodelingassumptions,suchasindepen-dentsensoryestimatesandGaussiannoise,arenotSampleintervalcompletelyfulfilled[53].Forexample,timeestimatesfromTRENDSinCognitiveSciencesdifferentsensorymodalitiesmaynotbestatisticallyinde-Figure3.Illustrationofthe‘central-tendency’effectintemporalreproduction.(A)pendent,assuggestedbyevidenceforacommontimingIndividualproductiontimesforindividualtrials(smalldots)andtheiraveragesformechanismeach[7,54,55].sampleinterval(largecirclesconnectedwiththicklines)areshownforthreepriorconditionsforatypicalparticipant.Averageproductiontimesdeviatedfromthelineofequality(diagonaldashedline)towardthemeanofthepriors(horizontalIntegratingBayesianinferencewithscalartimingtheorydashedlines).Prior-dependentbiaseswerestrongestforthe‘long’priorcondition.As(B)reviewedabove,scalartimingtheoryandBayesianSchematicrepresentationsofhowBayesianinferenceiscomputed.Upwardinferencearrowstacklecontextualcalibrationatdifferentlevels.inblackandgrayshowtwoexampleintervals.Verticaldashedlinesrepresentthenoise-perturbedmeasurementsassociatedwiththosesampleScalartimingtheoryfocusesoncognitivestructuresandintervals.Thelikelihoodfunction,theprior(distributionofexperimentalinformationintervals),flow,whereastheBayesianapproachempha-andtheposteriorareshownonthefarright.Thethickdotsonthesizesposteriorcomputationalprinciples.Oneofthecriticismsleviedandhorizontalarrowsshowtheoptimalestimatesbasedonaselectedcostfunction(here,square-errorfunction).Amongvariousobservermodels,aagainsttheBayesianapproachisthattheselectionoftheBayesianobserverassociatedwiththeBayesleast-square(BLS)wasthebestfit.likelihood,prior,andlossfunctionistooflexible,andAdapted,withpermission,from[6].sometimesadhoc.Manydatasetscanbefittedtosupporttheclaimofoptimalbehaviorbyselectingthe‘appropriate’thanvisualstimuli,theinternalreferenceforauditoryfunctions[48,56–58].Inordertoavoidthepitfallsofdurations(Ma)willbelargerthantheinternalreference‘BayesianFundamentalism’,JonesandLove[56]haveforvisualdurations(Mv).However,whenparticipantsusearguedthatBayesianmodelsmustbeintegratedwiththesamedecisioncriterionandbias,theinternaldiffer-moremechanisticapproachesiftheyaretoserveasgenu-encebetweenMaandMvcannotbeobservedifthetempo-inepsychologicaltheories.Inlightofthis,wecomparekeyralbisectiontaskisconductedseparatelywithinauditorycomponentsoftheBayesianapproachwithscalartimingorvisualmodalities.Thisisbecausebothinternalrefer-theory[59–63]inordertosuggesthowthesetwotheoreti-enceswillbecorrespondenttothesameexternal(auditorycalframeworksmightbeprofitablyintegrated.orvisual)duration(Figure2B).However,whenauditoryTherearethreeessentialelementsinaBayesianframe-andvisualdurationsarerandomlymixed,accordingtowork:thelikelihood,thepriorprobability,andthelossBayesianinference,theinternalreference(Mav)ofthefunctionforoptimization.Theseelementscanbestraight-mixeddurationswillbealinear-weightedaverageofMaforwardlymappedontotheprimaryinformation-proces-andMvwithweightsproportionaltotheircorrespondentsingstagesofscalartimingtheory:theclock,memory,and561 OpinionTrendsinCognitiveSciencesNovember2013,Vol.17,No.11decisionstages(Box2).Theclockstageisresponsibleforwhichprobabilisticrepresentationsareimplementedinthemeasurementofthedurationofanexternalevent,neuralcircuits[56,58,68].Forinstance,theobservationthatwhichissubjecttonoiseperturbation.TheBayesianlike-dopaminergicandcholinergicdrugshavedifferenteffectsonlihoodfunctionprovidesaprobabilitydescriptionofagiventheclockandmemorystagesofintervaltiming[61,69–71]measurement,conditionalonagivenphysicalduration.suggeststhatnovelpharmacologicaltechniquesmaypro-Scalartimingtheoryassumestwoseparatememoryrepre-videusefultoolsforstudyingtheneuralimplementationofsentations:aworkingmemorythatisabletotemporarilyprobabilisticrepresentations[72]–althoughthespecificstorethecurrentclockreadingandareferencememorydetailsremaintobetested.Interestingly,the‘migration’thatservesasalong-termstoreorreferenceofallrecordedeffectsobservedinPDpatientssuggestthatthelikelihoodclockreadingsrelevanttoaparticularcontext.FromthefunctionisflattenedbythewithdrawalofdopaminergicBayesianperspective,thepriorquantifiestheprobabilitymedication,whichisrequiredtomaintainmorenormaldistributionoftheinternalreferenceandtheposteriorfunctioningoftheclockstageinPDpatients.Thus,therepresentstheprobabilityofthememoryrepresentationunchangedpriorgainsmoreweightinthefinalestimateofthecurrentclockreading.Intheend,bothframeworks(Figure1C).Inthismanner,dopamine-deficientindividualsimplementsometypeofdecisionruleinordertogenerateaappeartobeabletobalanceperformancebyreducingtem-response.Inthisview,scalartimingtheoryprovidesaporaluncertaintyatthecostoftemporalaccuracy[11].rationalbasisforselectingtheappropriateBayesianfunc-IntegratingBayesianinferencewithscalartimingtheorytions,andtheBayesianframeworkprovidesprobabilisticcouldalsobebeneficialinexplainingotherformsofcontex-descriptionsoftemporalprocessing.tualcalibration,includingtheinfluencesofnon-temporalUnderlyingthelinkageofthetwoframeworks,however,factors(e.g.,backgroundintensity,speed/sequencestruc-areseveralkeydifferencesandanumberofimportantture)[4,73–75].constraints.Themaindifferencecomesfromtheimplemen-tationofthescalarproperty.ScalartimingtheoryassumesConcludingremarksthatthescalarpropertyisintroducedbythememorycon-Underordinarycircumstances,therepresentationsofstant,k*,appliedduringencoding[60,61,64–66].Bycon-eventdurationsare‘calibrated’byvariousformsoftempo-trast,thegeneralBayesianframeworkdoesnotprovideanyralcontext.Thesecontextualcalibrationsinclude‘migra-specificassumptionsconcerningthescalarproperty.How-tion’towardthecentraltendencyofadistributionever,inexperimentalapplicationsofBayesianinference(Vierordt’slaw),TOEs,andmodalitydifferences.Applica-[6,50],thescalarpropertyisoftenincorporatedintothetionofscalartimingtheorysuggeststhatcontextualcali-likelihooddistributioninordertoprovideconsistencywithbrationofeventdurationsoccursmainlyatthememorytheobtaineddata.Recentevidence[50]supportsthisas-stage[8–10].Ontheotherhand,recentBayesiansumption,suggestingthatthescalarpropertymayinfactapproachespointoutthatthelikelyreasonforsuchcali-originatefromtheclockstage.Thesecondmaindifferencebrationisanefforttoimprovetimedperformancebybetweenthetwoframeworksisinregardtomemoryupdat-reducingtheoverallerror[6,13,76].Inanefforttoresolveing.Inordertoaccountfortheeffectsofcontextualcalibra-theseapparentincompatibilities,wehaveshownthatthetion,thememorystageofscalartimingtheoryhasbeenthreeessentialcomponentsofaBayesianframework(i.e.,extendedfromtheoriginalworkingandreferencememorylikelihood,prior,andlossfunction)arecloselylinkedtothecomponents[38,39]toincludetheprocessesof‘memoryclock,memory,anddecisionstagesadvocatedbyscalarmixing’[8–10,40],anddynamicmemoryupdating[5,18].timingtheoryandincorporatedintoothertimingmodelsBycontrast,Bayesianinferenceoffersasimpleandconcise[40,69,77].ThematchedcounterpartsofaBayesianframe-approachforupdatingmemoryrepresentations,namelyworkcombinedwithscalartimingtheorynotonlyprovidesBayes’rule.However,selectionoftheappropriatelikeli-aforward-lookingperspectiveonintervaltiming,butalsohoodsandpriorsmustbedoneinconjunctionwithaspecificoffersquantitativepredictionsofdistortionsintemporalapplication.Thethirdandfinaldifferencethatwewillmemoryfornormalparticipants,aswellasforindividualsdiscussinvolvesthedecisionrulesappliedbythetwoframe-withneurologicalimpairments[78,79].Itisworthnoting,works.Scalartimingtheorystronglyfavorsaratio-rulehowever,thatmanyaspectsofintervaltimingremainapproach(i.e.,relativeerror–FigureI,Box2)[38,41,52]unsolved(Box3),evenforrelativelysimpletemporalfordurationcomparisons,largelybecauseitiscompatiblewiththescalarpropertyintroducedbythememorytransla-Box3.Questionsforfutureresearchtionconstant.IntheBayesianframework,thedecisionruleisHowcantheprobabilisticrepresentationsoftheBayesianlike-usedtominimizetheoverallerrorbasedonalossfunction,lihoodwhereasandpriorbeimplementedintemporalmemory?thelossfunctiondependsonaspecificapplication.TheBayesianinferencedoesnotexplicitlystatethesourceofthemostcommonlossfunctionusedbytheBayesianap-scalarproperty.Dothesensorylikelihood,prior,andlossfunctionproachisthesquare-errorfunction(Box2),whichhasbeenallexhibitthescalarproperty?shownCanBayesianinferencereadilyaccountfornon-temporalformsoftobeingoodagreementwithempiricalfindingscontextual[50,67].calibration(e.g.,stimulusintensityeffects)?Whatarethewaysinwhichgeneticand/orpharmacologicalObtainingabetterunderstandingoftheinteractionsprofilescanbeusedtounraveltheprobabilisticrepresentationsbetweentheBayesianframeworkandscalartimingtheoryandcomputationsusedintimeperception?shouldhelpustodevelopmorerobusttheoriesofintervalHowcanwefurtherintegratetheBayesianframeworkwithothertimingtheories,suchasthestriatalbeat–frequencymodelofintervalthatareabletohandlevarioustypesofcontextualtimingcalibration,[54,77]?whilealsosheddinglightonthemannerin562 OpinionTrendsinCognitiveSciencesNovember2013,Vol.17,No.11discrimination21Ulrich,R.andVorberg,D.(2009)Estimatingthedifferencelimeninandgeneralizationtasks[40,80].Contin-ued2AFCtasks:pitfallsandimprovedestimators.Atten.Percept.applicationofanintegratedBayesianframeworkwithPsychophys.mechanic-level71,1219–1227theories,suchasscalartimingtheoryand22theHellstro¨m,A.(1985)Thetime-ordererroranditsrelatives:mirrorsofstriatalbeat–frequencymodelofintervaltiming[54],cognitiveprocessesincomparing.Psychol.Bull.97,35–61shouldhelpustoexpandourunderstandingofthefunc-23Allan,L.G.(1979)Theperceptionoftime.Percept.Psychophys.26,340–tional354andneuralmechanismsofintervaltiming[81–84].24Spencer,R.M.etal.(2009)Evaluatingdedicatedandintrinsicmodelsoftemporalencodingbyvaryingcontext.Philos.Trans.R.Soc.Lond.B:AcknowledgmentsBiol.Sci.364,1853–1863WethankDavidBurr,CindyLustig,WilliamMatthews,andHedderik25Wearden,J.H.etal.(1998)Why‘soundsarejudgedlongerthanlights’:vanRijnfortheirconstructivecommentsonanearlierversionoftheapplicationofamodeloftheinternalclockinhumans.Q.J.Exp.manuscript.Thisworkwassupported,inpart,byGermanResearchPsychol.51B,97–120council(DFG)projectgrantSH166toZSandanAikenFoundation26Cheng,R.K.etal.(2011)CategoricalscalingofdurationasafunctionofFellowshiptoWHM.temporalcontextinagedrats.BrainRes.1381,175–18627Cheng,R.K.etal.(2008)Prenatal-cholinesupplementationReferencesdifferentiallymodulatestimingofauditoryandvisualstimuliin1agedrats.BrainRes.1237,167–175Buhusi,C.V.andMeck,W.H.(2005)Whatmakesustick?Functionalandneural28Wearden,J.H.etal.(2006)Whendoauditory/visualdifferencesinmechanismsofintervaltiming.Nat.Rev.Neurosci.6,755–7652durationjudgementsoccur?Q.J.Exp.Psychol.59,1709–1724Buhusi,C.V.andMeck,W.H.(2009)Relativetimesharing:newfindings29Droit-Volet,S.etal.(2007)Sensorymodalityandtimeperceptioninandanextensionoftheresourceallocationmodeloftemporalchildrenandadults.Behav.Processes74,244–250processing.Philos.Trans.R.Soc.Lond.B:Biol.Sci.364,1875–188530Cheng,R.K.andMeck,W.H.(2007)Prenatalcholinesupplementation3increasessensitivitytotimebyreducingnon-scalarsourcesofvarianceBuhusi,C.V.andMeck,W.H.(2009)Relativitytheoryandtimeperception:inadulttemporalprocessing.BrainRes.1186,242–254singleormultipleclocks?PLoSONE4,e6268431Lustig,C.andMeck,W.H.(2011)ModalitydifferencesintimingandGrondin,S.(2010)Timingandtimeperception:areviewofrecentbehavioraltemporalmemorythroughoutthelifespan.BrainCogn.77,298–303andneurosciencefindingsandtheoreticaldirections.Atten.Percept.32Ogden,R.S.etal.(2010)Arememoriesfordurationmodalityspecific?Psychophys.72,561–5825Q.J.Exp.Psychol.63,65–80Taatgen,N.andvanRijn,H.(2011)Tracesoftimespast:representations33Shi,Z.etal.(2010)AuditorytemporalmodulationofthevisualTernusoftemporalintervalsinmemory.Mem.Cogn.39,1546–1560effect:theinfluenceoftimeinterval.Exp.BrainRes.203,723–735634Hartcher-O’Brien,J.andAlais,D.(2011)TemporalventriloquisminaJazayeri,M.andShadlen,M.N.(2010)Temporalcontextcalibratesintervalpurelytemporalcontext.J.Exp.Psychol.Hum.Percept.Perform.37,timing.Nat.Neurosci.13,1020–102671383–1395Merchant,H.etal.(2013)Neuralbasisoftheperceptionandestimationof35Tomassini,A.etal.(2011)Perceiveddurationofvisualandtactiletime.Annu.Rev.Neurosci.36,313–3368stimulidependsonperceivedspeed.Front.Integr.Neurosci.5,51Penney,T.B.etal.(2000)Differentialeffectsofauditoryandvisualsignals36Helson,H.(1964)Adaptation-LevelTheory,Harper&Rowonclockspeedandtemporalmemory.J.Exp.Psychol.Hum.Percept.37Zakay,D.andBlock,R.A.(1997)Temporalcognition.Curr.Dir.Perform.26,1770–17879Psychol.Sci.6,12–16Penney,T.B.etal.(1998)Memorymixingindurationbisection.InTiming38Gibbon,J.etal.(1984)Scalartiminginmemory.Ann.N.Y.Acad.Sci.ofBehavior:Neural,PsychologicalandComputationalPerspectives423,52–77(Rosenbaum,D.A.andCollyer,C.E.,eds),pp.165–193,MIT39Gibbon,J.andChurch,R.M.(1984)SourcesofvarianceinanPress10informationprocessingtheoryoftiming.InAnimalCognitionGu,B-M.andMeck,W.H.(2011)NewperspectivesonVierordt’slaw:memory-mixing(Roitblat,H.L.etal.,eds),pp.465–488,LawrenceErlbauminordinaltemporalcomparisontasks.Lect.NotesComput.40Allman,M.J.etal.Propertiesoftheinternalclock:first-andsecond-Sci.6789,67–7811orderprinciplesofsubjectivetime.Annu.Rev.Psychol.(inpress)Gu,B-M.etal.Bayesianmodelsofintervaltiminganddistortionsintemporal41Gibbon,J.(1992)UbiquityofscalartimingwithaPoissonclock.J.memoryasafunctionofParkinson’sdiseaseanddopamine-relatedMath.Psychol.35,283–293errorprocessing.InTimeDistortionsinMind:TemporalProcessing42Melgire,M.etal.(2005)Auditory/visualdurationbisectioninpatientsinClinicalPopulations(Vatakis,A.andAllman,M.J.,eds),withleftorrightmedial-temporalloberesection.BrainCogn.58,119–BrillAcademicPublishers(inpress)12124Shi,Z.etal.(2013)Reducingbiasinauditorydurationreproductionbyintegrating43Petzschner,F.H.andGlasauer,S.(2011)IterativeBayesianestimationthereproducedsignal.PLoSONE8,e6206513asanexplanationforrangeandregressioneffects:astudyonhumanBurr,D.etal.(2013)Contextualeffectsininterval-durationjudgementspathintegration.J.Neurosci.31,17220–17229invision,auditionandtouch.Exp.BrainRes.230,87–981444Ernst,M.O.andDiLuca,M.(2011)Multisensoryperception:fromBurr,D.C.etal.(2009)Auditorydominanceovervisionintheperceptionintegrationtoremapping.InSensoryCueIntegrationofintervalduration.Exp.BrainRes.198,49–5715(Trommersha¨user,J.etal.,eds),pp.224–250,OxfordUniversityLejeune,H.andWearden,J.H.(2009)Vierordt’sTheExperimentalStudyPressoftheTimeSense(1868)anditslegacy.Eur.J.Cogn.Psychol.21,45Wolpert,D.M.(2007)Probabilisticmodelsinhumansensorimotor941–96016control.Hum.Mov.Sci.26,511–524Cicchini,G.M.etal.(2012)Optimalencodingofintervaltiminginexpert46Petzschner,F.H.etal.(2012)Combiningsymboliccueswithsensorypercussionists.J.Neurosci.32,1056–106017inputandpriorexperienceinaniterativeBayesianframework.Front.Malapani,C.etal.(1998)CoupledtemporalmemoriesinParkinson’sdisease:Integr.Neurosci.6,58adopamine-relateddysfunction.J.Cogn.Neurosci.10,316–3311847Burge,J.etal.(2008)ThestatisticaldeterminantsofadaptationrateinDyjas,O.etal.(2012)Trial-by-trialupdatingofaninternalreferenceindiscriminationhumanreaching.J.Vision8,1–19http://dx.doi.org/10.1167/8.4.20tasks:evidencefromeffectsofstimulusorderandtrialsequence.48Mamassian,P.andLandy,M.S.(2010)It’sthattimeagain.Nat.Atten.Percept.Psychophys.74,1819–184119Neurosci.13,914–916Hellstro¨m,A.(2003)Comparisonisnotjustsubtraction:effectsoftime-and49Miyazaki,M.etal.(2005)TestingBayesianmodelsofhumanspace-orderonsubjectivestimulusdifference.Percept.Psychophys.65,coincidencetiming.J.Neurophysiol.94,395–3991161–11772050Acerbi,L.etal.(2012)InternalrepresentationsoftemporalstatisticsYeshurun,Y.etal.(2008)Biasandsensitivityintwo-intervalforcedchoiceandfeedbackcalibratemotor-sensoryintervaltiming.PLoSComput.procedures:testsofthedifferencemodel.VisionRes.48,1837–1851Biol.8,e1002771563 OpinionTrendsinCognitiveSciencesNovember2013,Vol.17,No.1151Sohn,H.andLee,S-H.(2013)Dichotomyinperceptuallearningof72Farrell,M.S.(2011)UsingDREADDstoisolateinternalclocks.Front.intervaltiming:calibrationofmeanaccuracyandprecisiondifferinIntegr.Neurosci.5,87specificityandtimecourse.J.Neurophysiol.109,344–36273Matthews,W.J.(2013)Howdoessequencestructureaffectthe52Penney,T.B.etal.(2008)Categoricalscalingofdurationbisectioninjudgmentoftime?Exploringaweightedsumofsegmentsmodel.pigeons(Columbalivia),mice(Musmusculus),andhumans(HomoCogn.Psychol.66,259–282sapiens).Psychol.Sci.19,1103–110974Matthews,W.J.etal.(2011)Stimulusintensityandtheperceptionof53Ernst,M.O.(2012)Optimalmultisensoryintegration:assumptionsandduration.J.Exp.Psychol.Hum.Percept.Perform.37,303–313limits.InTheNewHandbookofMultisensoryProcesses(Stein,B.E.,75Eagleman,D.M.andPariyadath,V.(2009)Issubjectivedurationaed.),pp.1084–1124,MITPresssignatureofcodingefficiency?Philos.Trans.R.Soc.Lond.B:Biol.Sci.54Matell,M.S.andMeck,W.H.(2004)Cortico-striatalcircuitsand364,1841–1851intervaltiming:coincidencedetectionofoscillatoryprocesses.Cogn.76Simen,P.etal.(2011)Amodelofintervaltimingbyneuralintegration.BrainRes.21,139–170J.Neurosci.31,9238–925355Ivry,R.B.andHazeltine,R.E.(1995)Perceptionandproductionof77VanRijn,H.etal.(2013)Dedicatedclock/timing-circuittheoriesoftemporalintervalsacrossarangeofdurations:evidenceforaintervaltiming.InNeurobiologyofIntervalTiming(Merchant,H.andcommontimingmechanism.J.Exp.Psychol.Hum.Percept.Perform.deLafuente,V.,eds),Springer-Verlag(inpress)21,3–1878Allman,M.J.andMeck,W.H.(2012)Pathophysiologicaldistortionsin56Jones,M.andLove,B.C.(2011)Bayesianfundamentalismortimeperceptionandtimedperformance.Brain135,656–677enlightenment?Ontheexplanatorystatusandtheoretical79Allman,M.J.etal.(2012)DevelopmentalneuroscienceoftimeandcontributionsofBayesianmodelsofcognition.Behav.BrainSci.34,number:implicationsforautismandotherneurodevelopmental169–188disabilities.Front.Integr.Neurosci.6,757Bowers,J.S.andDavis,C.J.(2012)Bayesianjust-sostoriesin80Heinemann,E.G.(1984)Amodelfortemporalgeneralizationandpsychologyandneuroscience.Psychol.Bull.138,389–414discrimination.Ann.N.Y.Acad.Sci.423,361–37158Pouget,A.etal.(2013)Probabilisticbrains:knownsandunknowns.81Meck,W.H.(2003)FunctionalandNeuralMechanismsofIntervalNat.Neurosci.16,1170–1178Timing,CRCPress59Church,R.M.(1984)Propertiesoftheinternalclock.Ann.N.Y.Acad.82Freestone,D.M.etal.(2013)ResponseratesaregovernedmorebytimeSci.423,566–582cuesthancontingency.TimingTimePercept.1,3–2060Meck,W.H.(1983)Selectiveadjustmentofthespeedofinternalclock83Lewis,P.A.andMeck,W.H.(2012)Timeandthesleepingbrain.andmemoryprocesses.J.Exp.Psychol.Anim.Behav.Process.9,171–Psychologist25,594–59720184Meck,W.H.etal.(2012)Intervaltimingandtime-baseddecision61Meck,W.H.(1996)Neuropharmacologyoftimingandtimeperception.making.Front.Integr.Neurosci.6,13Cogn.BrainRes.3,227–24285Buhusi,C.V.etal.(2009)Intervaltimingaccuracyandscalartimingin62Meck,W.H.(2006)Neuroanatomicallocalizationofaninternalclock:aC57BL/6mice.Behav.Neurosci.123,1102–1113functionallinkbetweenmesolimbic,nigrostriatal,andmesocortical86Gibbon,J.etal.(1997)Towardaneurobiologyoftemporalcognition:dopaminergicsystems.BrainRes.1109,93–107advancesandchallenges.Curr.Opin.Neurobiol.7,170–18463Church,R.M.(2003)Aconciseintroductiontoscalartimingtheory.In87Brannon,E.M.etal.(2008)ElectrophysiologicalmeasuresoftimeFunctionalandNeuralMechanismsofIntervalTiming(Meck,W.H.,processingininfantandadultbrains:Weber’slawholds.J.Cogn.ed.),pp.3–22,CRCPressNeurosci.20,193–20364Meck,W.H.(2002)Cholineuptakeinthefrontalcortexisproportional88Church,R.M.etal.(1991)Symmetricalandasymmetricalsourcesoftotheabsoluteerrorofatemporalmemorytranslationconstantinvarianceintemporalgeneralization.Anim.Learn.Behav.19,207–214matureandagedrats.Learn.Motiv.33,88–10489Lewis,P.A.andMiall,R.C.(2009)Theprecisionoftemporal65Meck,W.H.andAngell,K.E.(1992)Repeatedadministrationofjudgement:milliseconds,manyminutes,andbeyond.Philos.Trans.pyrithiamineleadstoaproportionalincreaseintherememberedR.Soc.Lond.B:Biol.Sci.364,1897–1905durationsofevents.Psychobiology20,39–4690Wearden,J.H.andLejeune,H.(2008)Scalarpropertiesinhuman66Meck,W.H.andChurch,R.M.(1987)Cholinergicmodulationofthetiming:conformityandviolations.Q.J.Exp.Psychol.61,569–587contentoftemporalmemory.Behav.Neurosci.101,457–46491Rakitin,B.C.etal.(1998)Scalarexpectancytheoryandpeak-interval67Ko¨rding,K.P.andWolpert,D.M.(2004)Thelossfunctionoftiminginhumans.J.Exp.Psychol.Anim.Behav.Process.24,15–33sensorimotorlearning.Proc.Natl.Acad.Sci.U.S.A.101,9839–984292Ko¨rding,K.P.andWolpert,D.M.(2004)Bayesianintegrationin68Drugowitsch,J.andPouget,A.(2012)Probabilisticvs.non-sensorimotorlearning.Nature427,244–247probabilisticapproachestotheneurobiologyofperceptualdecision-93Ko¨rding,K.P.andWolpert,D.M.(2006)Bayesiandecisiontheoryinmaking.Curr.Opin.Neurobiol.22,963–969sensorimotorcontrol.TrendsCogn.Sci.10,319–32669Oprisan,S.A.andBuhusi,C.V.(2011)Modelingpharmacologicalclock94Sun,J.Z.etal.(2012)AframeworkforBayesianoptimalityofandmemorypatternsofintervaltiminginastriatalbeat-frequencypsychophysicallaws.J.Math.Psychol.56,495–501modelwithrealistic,noisyneurons.Front.Integr.Neurosci.5,5295Gibbon,J.andChurch,R.M.(1990)Representationoftime.Cognition70Coull,J.T.etal.(2011)Neuroanatomicalandneurochemicalsubstrates37,23–54oftiming.Neuropsychopharmacology36,3–2596Griffiths,T.L.etal.(2008)Bayesianmodelsofcognition.InThe7171Meck,W.H.etal.(2013)Hippocampus,time,andmemory–aCambridgeHandbookofComputationalPsychology(Sun,R.,ed.),retrospectiveanalysis.Behav.Neurosci.127,642–654pp.1–49,CambridgeUniversityPress564

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭