冷冻电镜知识讲解.pptx

冷冻电镜知识讲解.pptx

ID:57288561

大小:4.02 MB

页数:37页

时间:2020-08-10

冷冻电镜知识讲解.pptx_第1页
冷冻电镜知识讲解.pptx_第2页
冷冻电镜知识讲解.pptx_第3页
冷冻电镜知识讲解.pptx_第4页
冷冻电镜知识讲解.pptx_第5页
资源描述:

《冷冻电镜知识讲解.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、冷冻电镜的发明及其在生物学的应用报告人:XXX冷冻电镜是什么?冷冻电子显微镜技术(cryo-electronmicroscopy)简称冷冻电镜:应用冷冻固定技术,低温下使用透射电子显微镜观察样品的显微技术,从而得到生物大分子的结构。冷冻电镜技术获2017诺贝尔化学奖2017年10月4日下午5点45分许,诺贝尔奖评委会主席格荣·汉森(GoranHansson)宣布,因发明用于生物分子的高分辨率结构测定的冷冻电子显微镜(cryo-electronmicroscopy),瑞士洛桑大学的雅克·杜波切特(

2、JacquesDubochet)、美国哥伦比亚大学的乔基姆·弗兰克(JoachimFrank)和英国剑桥大学的理查德·亨德森(RichardHenderson)获得2017年度诺贝尔化学奖。诺贝尔奖官方称为“使得生物化学进入一个新时代”上世纪50年代,利用X射线成像技术解析蛋白质结构,人们才首次得以拍出蛋白质晶体的螺旋状结构图片。X射线晶体学是最早用于结构解析的实验方法之一。其中关键步骤之一即是,为获得可供X射线衍射的单晶,需要将纯化后的生物样品进行晶体生长。现实情况却是,目前很多复杂的大分子物

3、质难以获得晶体。冷冻电镜产生背景彼得阿格雷(美)和罗德里克麦金农(美)对细胞膜中的水通道的发现以及对离子通道的研究,共同分享了2003年的诺贝尔化学奖。上世纪80年代初,核磁共振成像技术问世,人们得以对溶液中和固态的蛋白质进行成像研究,不仅进一步认识了蛋白质的结构,更获得了蛋白质如何运动及与其他分子相互作用的基本了解。被认为比晶体结构更能够描述生物大分子在细胞内的真实结构,并且能获得氢原子的结构位置。缺点则在于蛋白质在溶液中往往结构不稳定而难得获取稳定的信号。X射线晶体学法和核磁共振技术均对蛋白

4、质的纯度、结晶性和绝对量有较高的要求,使得图像分辨率难以提升,更是无法获得蛋白质结构的动态变化。因此,无论是X射线晶体学成像还是核磁共振,都不能让研究者获得高分辨率的大型蛋白复合体结构,生物结构学领域的发展也因此受困于成像技术。电子显微镜1、为什么不使用光学显微镜?光学显微镜利用的是光子的波动性,而光子的波长大概在500纳米左右。蛋白质分子大小在1-100nm之间,所以光子的波长比蛋白质分子还要大,因此光波能绕过蛋白质分子,也就看不到蛋白质了。2、电子显微镜的原理?电子的波长是光子波长的十万分之

5、一左右,是一根极细的探针,理论上它打在蛋白质分子这类生物大分子身上能被反射,这些反射的电子就能产生一张照片,电子显微镜相当于是用电子替代光线来照射物体,由于电子的波长远低于光波,它能够看到非常小尺度的结构。3、电子显微镜观测蛋白质分子有活性的生物大分子遇到的问题?第一个问题是真空问题,电子显微镜的电子只能在真空中飞行的时候才能保持稳定的动能。而蛋白质这类生物大分子一般处于溶液中,在真空环境下,溶液会挥发出来,污染电子显微镜。液态水在电子显微镜的真空管里蒸发,会使得生物大分子瓦解。第二个问题是电子

6、打在蛋白质这类生物大分子上容易把蛋白质打坏了,因为电子的能量比较高,而生物大分子一般依靠氢键来形成它的空间结构,氢键的能量很低,电子打上去以后,氢键就被打断了。第三个问题则更加严重,因为蛋白质分子这类生物大分子是有活性的,它们是运动的,电子打上去反射回来的方向会因为分子的运动而变得杂乱无章。冷冻电镜的诞生1975年,亨德森利用电子显微镜的方法,发表出来第一个非常粗糙的视紫红质蛋白结构,图片上可以看出七个跨膜蛋白链。证明了电子显微镜在生物领域的适用性。这也是历史上第一张膜蛋白领域的三维结构。细菌视

7、紫红质较为粗糙的三维立体结构图像亨德森将未脱离细胞膜的细菌视紫红质直接放置在电子显微镜下进行观察,借助表面覆盖的葡萄糖防止真空干涸,并采用强度更低的电子束流,得出细菌视紫红质在细胞膜上是规整排列且朝向一致。之后,在前述AronKlug等人提出的三维重构技术的基础上,亨德森和同事获得了细菌视紫红质较为粗糙的三维立体结构图像。亨德森所发展出来的方法也具有其局限性,这是因为他所研究的蛋白本身的特性让研究者能够采用所谓“冷冻电子断层成像术”来测定其结构。简单来说,研究人员要转动细胞膜,从不同角度对蛋白拍

8、照,最终构建出蛋白的三维结构。这种方法只适用于排列有一定规律的蛋白——如果它们是杂乱无章的,这种方法就难以奏效了。1981年,弗兰克完成了单颗粒三维重构算法及软件Spider,利用计算机识别图像把相同蛋白质的不同影子收集起来,并且将轮廓相似的图像进行分类对比,通过分析不同的重复模式将图片拟合成更加清晰的2D图像。在此基础上,通过数学方法,在同一种蛋白质的不同2D图像之间建立联系,以此为基础拟合出3D结构图像。弗兰克的图形拟合程序被认为是冷冻电镜发展的基础。在1980年代初,雅克·杜伯切特成功将水

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。