讲义:因式分解、代数式化简、求值(竞赛辅导).doc

讲义:因式分解、代数式化简、求值(竞赛辅导).doc

ID:58222419

大小:438.50 KB

页数:12页

时间:2020-04-28

讲义:因式分解、代数式化简、求值(竞赛辅导).doc_第1页
讲义:因式分解、代数式化简、求值(竞赛辅导).doc_第2页
讲义:因式分解、代数式化简、求值(竞赛辅导).doc_第3页
讲义:因式分解、代数式化简、求值(竞赛辅导).doc_第4页
讲义:因式分解、代数式化简、求值(竞赛辅导).doc_第5页
资源描述:

《讲义:因式分解、代数式化简、求值(竞赛辅导).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一、因式分解1.运用公式法(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1)

2、,其中n为偶数;(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]=-2xn-1yn(x2n-y2)2=-2xn-

3、1yn(xn-y)2(xn+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)  =(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b

4、+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2分解因式:a3+b3+c3-3abc.我们已经知道公(a+b)3=a3+3a2b+3ab2+b3=(a+b)3-3ab(a+b).解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).例3分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0

5、,由此想到应用公式an-bn来分解.解x16-1=(x-1)(x15+x14+x13+…x2+x+1),   说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用. 2.拆项、添项法  因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.  例4分解因

6、式:x3-9x+8.解法1将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-

7、9x+8=x2(x-1)+(x-8)(x-1)例5分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解(1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。