Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and

Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and

ID:81816739

大小:6.09 MB

页数:11页

时间:2023-07-21

上传者:U-14522
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第1页
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第2页
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第3页
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第4页
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第5页
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第6页
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第7页
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第8页
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第9页
Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and_第10页
资源描述:

《Highly E ffi cient Near-Infrared Thermally Activated Delayed Fluorescence Molecules via Acceptor Tuning Theoretical Molecular Design and》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterHighlyEfficientNear-InfraredThermallyActivatedDelayedFluorescenceMoleculesviaAcceptorTuning:TheoreticalMolecularDesignandExperimentalVerification§§KaiZhang,FeiYang,YuchenZhang,YuyingMa,JianzhongFan,JianFan,*Chuan-KuiWang,*andLiliLin*CiteThis:J.Phys.Chem.Lett.2021,12,1893−1903ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Near-infrared(NIR)thermallyactivateddelayedfluorescence(TADF)materialshaveshowngreatapplicationpotentialinorganiclight-emittingdiodes,photo-voltaics,sensors,andbiomedicine.However,theirfluorescenceefficiency(ΦF)isstillhighlyinferiortothoseofconventionalNIRfluorescentdyes,seriouslyhinderingtheirapplications.ThisstudyaimstoprovidetheoreticalguidanceandexperimentalverificationforhighlyefficientNIR-TADFmoleculardesign.First,thelight-emittingmechanismoftwodeep-redTADFmoleculesisrevealedusingfirst-principlescalculationandthethermalvibrationcorrelationfunction(TVCF)method.ThenseveralacceptorsaretheoreticallydesignedbychangingthepositionofthecyanogrouporbyintroducingthephenanthrolineintoCNBPz,and44moleculesaredesignedandstudiedtheoretically.ThephotophysicalpropertiesofDA-3intolueneandtheamorphousstatearesimulatedusingamultiscalemethodcombinedwiththeTVCFmethod.TheNIR-TADFpropertyforDA-3ispredictedbothintolueneandintheamorphousstate.ExperimentalmeasurementfurtherconfirmsthattheTADFemissionwavelengthofDA-3is730nmandΦFisashighas20%.ItisthehighestfluorescenceefficiencyreportedforTADFmoleculeswithemissionwavelengthslargerthan700nmintoluene.Ourworkprovidesaneffectivemoleculardesignstrategy,andagoodcandidateforhighlyefficientNIR-TADFemittersisalsopredicted.Fluorescentmaterialsbasedontheprincipleofthermally(ΦF)oftheemitterduringtheconversionoftheradiationactivateddelayedfluorescence(TADF)with100%excitonexcitonsintophotons.Inaddition,H-aggregationandstrongutilizationand>30%oftheexternalquantumefficiencyusedinintermolecularπ−πstackinginteractionsarealsothemainorganiclight-emittingdiodes(OLEDs)areknownasthe17−19reasonsforthequenchingofsuchmolecules.Therefore,“third-generation”organicelectroluminescentmaterialandtherealizationofefficientNIR-TADFshasbeenachallengingDownloadedviaUNIVOFCAPETOWNonMay14,2021at14:00:38(UTC).1−7haveattractedanincreasinglevelofattentionofresearchers.task.TADFmaterialscanbeanattractivelow-costalternativetoNowstrongdonorsandacceptorsareusuallyappliedtophosphorescentorganometalliccomplexescontainingexpen-constructtheredTADFemitter,becausethelowenergyforSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.sivepreciousmetalssuchasiridiumandplatinum,especiallyinthesingletstateisessentialforrealizingredemission.At8−10OLEDdisplaysandsolid-statelightingapplications.Inthepresent,donorgroupsofTADFmoleculesaremainlyaromaticpastdecade,manysuccessfulcasesofthesynthesisandcompoundscontainingnitrogenatoms,suchascarbazole,applicationofTADFmaterialswerereported.Inparticular,thetriphenylamine,acridine,phenoxazine,andtheirderivatives.20simplemoleculardesignstrategieswithelectron-donor(D)Theacceptorgroupsthathaveanimportantimpactontheandelectron-acceptor(A)frameworksweresuccessfulin11,12luminouscoloranddeviceperformancehaverecentlybecomedevelopingblueandgreenTADFemitters.However,thetheresearchfocus.Itisshownthattheintroductionofeffectivedevelopmentofdeepred(DR)ornear-infraredaromaticmoietiesinacceptorstoconstructDRandNIR(NIR)moleculesthatarewidelyusedinthefieldsof21TADFmaterialsisaneffectivemethod.However,thecommunication,organicphotovoltaics,night-visiondisplays,organicsensors,andNIRbioimagingisstillanissue,becausesimilarsimplemoleculardesignstrategiesfacethechallengeofReceived:December25,2020fastnonradiativedecayofsingletstatesfornear-infraredAccepted:February10,2021emission(i.e.,wavelengthmaximaof>700nm).13−16Published:February15,2021Accordingtotheenergygaptheorem,thenonradiationrate[Knr∝αexp(−βΔEopt)]increasesexponentiallywithadecreaseinΔEopt,seriouslyaffectingthefluorescenceefficiency©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c038051893J.Phys.Chem.Lett.2021,12,1893−1903

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.ChemicalstructuresofpCNBPz(1),oCNPPz(2),pCNPPz(3),oCNPQx(4),CNBPz,andCNBQxanditsrelatedstructuresandotherdonorunitsusedfordeepred/NIRTADFmolecules,withcalculatedLUMOandHOMOlevelsobtainedatthePBE0-1/3/6-311G(d,p)leveloftheory.Table1.SummaryofPhotophysicalParametersforDa-3inTolueneintheExperimentK(s−1)K(s−1)K(s−1)K(s−1)τ(ns)τ(μs)ΦrnrISCTADFFTADFFtoluene6.00×1072.40×1081.08×1071.7×1043.211.20.200acceptorsarestilllimitedsuchasacetylacetonateboronstudyindicatesthatDA-pCNPPz(DA-3)isagoodcandidatedifluoride,acenaphtho[1,2-b]pyrazine-8,9-dicarbonitrileforNIR-TADFemitterswithanearly120nmred-shift22(APDC),heterocyclicquinoxaline-6,7-dicarbonitrilecomparedtoDA-CNBPz,andthesameup-conversionchannel1723(QCN),11,12-dicyanodibenzo[a,c]phenazine(CNBPz),isfoundintoluene(Table1).Thephotophysicalpropertiesof24,252,3-dicyanodibenzo[f,h]quinoxaline(CNBQx),5,6-DA-3intheamorphousstatearealsosimulated,which26dicyano[2,1,3]benzothiadiazole(CNBz),anddibenzo[a,c]-indicatesthattheemissionwavelengthcouldbefurtherred-27phenazine-3,6-dicarbonitrile(PZCN).Withthestrategyshifted.Finally,theDA-3moleculewassynthesizedanditsdescribedabove,oneofthemostrepresentativeNIR-TADFluminescencewasexplored,whichindicatesthatDA-3exhibitsmolecules(CAT-1)withthelongestemissionwavelength(770distinctTADFcharacteristicsintoluenewithaΦFof20%atnm)intoluenedeterminedtodatewassynthesizedonthethepeakof730nm,whichisthehighestefficiencyofaNIR-basisofbis(cyano)pyrazinebyBronsteinetal.;nevertheless,itsTADFmaterialwithanemissionwavelengthexceeding70028ΦFisonly3.9%.nmreportedintoluene.Inthiswork,ahighlyefficientNIR-Recently,TADFemitterswithCNBPzandCNBQxasTADFemitteristheoreticallypredictedonthebasisofafirst-acceptorsweresynthesizedandreportedbyYasuda’sgroup.Itprinciplesstudy,whichisalsosynthesizedandprovenisfoundthattheCNBPz-basedTADFmoleculescouldachieveexperimentally.Ourworkshouldhelpimproveourunder-pureredelectroluminescencewithawavelengthof670nmandstandingofthestructure−propertyrelationshipandfavortheahighexternalelectroluminescencequantumefficiencydesignofhigh-efficiencyNIR-TADFmaterials.23(15%).Herein,theluminescencecharacteristicsoftwoMechanismofDR-TADFEmitters.ThermallyactivatedCNBPz-basedmolecules(AC-CNBPzandDA-CNBPz)indelayedfluorescenceisgeneratedonthebasisofthetransitiontolueneandthecrystalstatearetheoreticallyexplained,andbetweenexcitedstateswithdifferentspinmultiplicities.theirluminescencemechanismsareverified.OnthebasisofSubsequently,thesingletandtripletexcitedstatesofAC-thestudydescribedabove,aseriesofnewacceptorsareCNBPzandDA-CNBPzarecalculatedwiththetime-designedbyregulatingthesubstitutionpositionofcyanogroupdependentdensityfunctionaltheory(TD-DFT)method.(CN)orbyintroducingphenanthrolineintoCNBPzandThesolventeffectandsolidphaseenvironmentaresimulatedCNBQx{8b,14a-dihydrodibenzo[a,c]phenazine-10,13-dicar-bythepolarizedcontinuummodel(PCM)andthequantumbonitrile[pCNBPz(1)],8b,14a-dihydro-4,5,9,14-mechanicscombinedwithmolecularmechanics(QM/MM)tetraazbenzo[b]triphenylene-11,12-dicarbonitrile[oCNPPzmethodinthetwo-layerONIOMmodel,respectively(as31−36(2)],8b,14a-dihydro-4,5,9,14-tetraazabenzo[b]triphenylene-showninFigureS1).IntheONIOMmodel,thecenter10,13-dicarbonitrile[pCNPPz(3)],and4a,12b-dihydro-moleculeisselectedasthehighlayerandcalculatedwiththe1,4,8,9-tetraazatriphenylene-2,3-dicarbonitrile[oCNPQxQMmethod,whilethesurroundingmoleculesaretreatedas(4)]},whichhasbeenfoundaneffectivestrategyforrealizingthelowlayerandinvestigatedwiththeMMmethods.Forthe29,30red-shiftemission(Figure1).Inaddition,afirst-principlesMMcalculation,theuniversalforcefield(UFF)isadopted.1894https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure2.Wavelengthandoscillatorstrength(f)oftheD−Amoleculewith(a)ACandDAand(b)NPAandTPAasdonors.Wavelengthandoscillatorstrength(f)ofD−A−Dmoleculeswith(c)ACandDAand(d)NPAandTPAasdonors.FortheQMcalculations,theTD-DFTmethodisusedforthevaluesintoluene(624and640nm);thus,allofthefollowingstudyofexcitedstatesandtheelectronicembeddingQMcalculationsareperformedatthePBE0-1/3/6-31g*level.mechanismisadoptedtotreattheQM/MMinteraction.AInaddition,theradiativedecayrate(Kr),thenonradiativeratefewfunctionals,includingB3LYP,PBE0,PBE0-1/3,BMK,(Knr),andtheintersystemcrossing(ISC)rate(KISC)areM06-2X,CAM-B3LYP,andωB97X-D,areusedtoevaluatetheimportantparametersfortheexcited-statedecayprocesses.emissionwavelengthtogetherwiththe6-31g*basisset(asTherefore,thethermalvibrationcorrelationfunction(TVCF)showninTableS1).Thecalculationsaboveareallcarriedoutisusedtoquantitativelycalculatethedecayratesinthe37intheGaussian16package.ItisfoundthatthefluorescenceMOMAPsoftware,andthefluorescenceefficiencywavelengthsofAC-CNBPzandDA-CNBPzcalculatedattheKr38−40PBE0-1/3/6-31g*levelareconsistentwiththeexperimental(Φ=FKKK++)isevaluated.ThedetailedcalculationrnrISC1895https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.Chemicalstructuresof(a)AC-CNBPzandAC-1,-2,and-3and(b)DA-CNBPzandDA-1,-2,and-3.Simulatedemissionspectraof(c)AC-CNBPzandAC-1,-2,and-3and(d)DA-CNBPzandDA-1,-2,and-3intoluene.formulareferstotheSupportingInformation.Fromthereducesthearomaticityoftheacceptor,whichinturnboostscalculationresults,alargeenergygapandasmallspinorbitthereductionoftheLUMOenergy.Inaddition,wealsocoupling(SOC)constantbetweenthefirstsingletexcitedstatecalculatedtheenergyofthehighestoccupiedmolecularorbital(S1)andthefirsttripletexcitedstate(T1)(ΔEST)arefound,(HOMO)forphenyl-di-p-tolyl-amine(DA),triphenyl-aminewhichwouldlimitthereverseintersystemcrossing(RISC)(TPA),9,9-dimethyl-10-phenyl-9,10-dihydro-acridine(AC),process(TableS2).However,asmallenergydifferenceandaand10-phenyl-9,10-dihydro-acridine(NPA).ItisshownthatlargeSOCconstantbetweenthesecondtripletexcitedstateDAhasthehighestenergyforHOMO;thus,ithasthe(T2)andS1opentheup-conversionchannelofT2−S1(Tablestrongestelectron-donatingability.ItcanbeforecastedthataS2).Onthebasisofthecalculateddecayrates,wefindthatthestrongacceptororastrongdonorcouldinduceasmallerdecreaseintheKISCandtheincreaseintheKrforAC-CNBPzenergygapbetweentheHOMOandLUMO;thus,alongerinthesolidphasearethemainreasonsforaggregation-inducedemissionwavelengthwouldbeobtained.Withthesixacceptorsemissionenhancement(AIEE).However,thedecreaseinKrandthefourdonorsmentionedabove,44D−AorD−A−DandtheincreaseinKnrforDA-CNBPzinthesolidphaseleadtypemoleculesaredesignedforthepreliminaryscreeningoftoadecreaseinΦF;thus,aggregation-causedquenchingefficientNIR-TADFmolecules(seeFigure2andTableS5).(ACQ)isfound(seeTablesS3andS4).OurresultsareinWefoundthefollowingrules.(i)TheD−A−Dmoleculeswithgoodagreementwiththeexperimentaldata,whichcouldhelpACandNPAasdonorshavelongeremissionwavelengthsandonebetterunderstandexperimentalresultsandverifytheequivalentoscillatorstrengthscomparedwiththoseofD−Aaccuracyofourquantitativecalculationinturn.typemolecules.However,theD−AmoleculeswithDAandTheoreticalDesignforNIR-TADFMolecules.BecauseTPAasdonorshavelongeremissionwavelengthsandlargertheoreticalmoleculardesignhasasignificantadvantageinoscillatorstrengths.(ii)Themoleculeswithunmethylatedcostincomparisonwithexperimentalmeasurement,moleculesNPAasadonorhaveaslightlylongeremissionwavelengthandcomposedofdonorandacceptorgroupsaredesignedanequivalentoscillatorstrengthcomparedwiththoseoftheoretically.Fouracceptorgroups,pCNBPz(1),oCNPPzmethylatedAC.Incomparison,theD−Atypemoleculeswith(2),pCNPPz(3),andoCNPQx(4),aredesignedonthebasismethylationhaveamorepronouncedred-shiftthanunmethy-ofCNBPzandCNBQx(seeFigure1).ChangingthecyanolatedTPAasadonor,buttheoscillatorstrengthdecreasesgrouptotheparapositionorthesubstitutionofphenanthro-slightly.linecaneffectivelyreducetheenergyofthelowestunoccupiedEmissionMechanismofSelectedD−ATypeMolecules.Becausemolecularorbital(LUMO)comparedwithCNBPzandD−Atypemoleculesaremoreeasilysynthesized,theCNBQx.Inaddition,thecombinationofbothmethodsluminescencepropertiesofAC-1,-2,and-3aswellasDA-1,describedabovecouldfurtherreducetheenergyofLUMOs.It-2,and-3molecules(asshowninFigure3a,b)withasimilarcanalsobeseenfromthelocalizedorbitallocator(LOL)−πstructureandlongwavelengthsarefurthersystematicallycoloringdiagramthattheπelectrondelocalizationcharacter-studied.ItisfoundthatAC-3andDA-3withemissionisticofthecyanogroupattheparapositionissignificantlywavelengthsof759and757nm,respectively,havethemostweakerthanthatattheorthoposition(FigureS2).obviousred-shiftduetothestrongelectron-acquiringabilityofFurthermore,theelectrondelocalizationcharacteristicofthepCNPPz(3)(asshowninFigure3c,d).Generalizedcharge41nitrogenatominphenanthrolineisalsosignificantlyreduced.decompositionanalysis(GCDA)showsthatLUMOsofTheweakeningofthedelocalizationofπelectronseffectivelythesemoleculesaremainlycontributedbytheacceptor,while1896https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.(a)ChemicalstructureofDA-3.(b)SetupofthePCMmodel.(c)SetupoftheQM/MMcomputationalmodel.thedonorscontributemosttotheHOMOs(FigureS3).InbetweenelectronsandholesthanAC-1,-2,and-3,andtheaddition,GCDAalsoshowsthattheamountofnetchargeoverlapofelectronsandholesisgreaterduetothestrongtransferintheemitterswithDAisgreaterthanthatintheelectron-donatingabilityoftheDAgroup.FromthedatainemitterswithAC(TableS6).Meanwhile,onecanseethatTableS7,wecanseethatthedihedralanglesbetweentheintroducingthephenanthrolinecaneffectivelyfacilitatethedonorandtheacceptorordihedralanglesbetweenthechargetransferprocess,whichislittleaffectedbythechangeinacceptorandtheacceptoraresmallerforDA-basedemittersthepositionofthecyanogroup.Thus,strongerelectron-thanforAC-basedemitters.ItindicatesthatemitterswithDAdonatingabilityofDAthanofACisindicated.Thetendtobeplanar,whichisfavorablefortheoverlapofphenanthrolinecouldenhancetheelectron-donatingabilityelectronsandholes.Moreover,fromtheIGManalysisshownofdonors,whilethevariationofthecyanogroupalmostmakesinFigureS8,wecanseethattheintroductionofphenanthro-nodifference.TheLUMOsforAC-1,-2,and-3aswellasDA-lineisbeneficialtotheformationofintramolecularhydrogen1,-2,and-3arealllowerthanthoseforAC-CNBPzandDA-bonds,whichcouldfurtherreducethedihedralanglebetweenCNBPzinenergyduetotheweakeningofthedelocalizationofthedonorandtheacceptor.Insummary,strongelectronπelectrons(FigureS4).ForS1dominatedbytheelectronicdonationofdonorsandelectronwithdrawalofacceptorsastransitionfromtheHOMOtoLUMO,asmallerHOMO−wellasthesmalldihedralanglesbetweenthemareimportantLUMOenergygapcaninducealargeremissionwavelength.factorsforreducingthecentroiddistancebetweenelectronsTherefore,theemissionwavelengthsofAC-1,-2,and-3aswellandholes,whichinturnleadstoamoresignificantasDA-1,-2,and-3allhavedifferentdegreesofred-shift.contributionofTx(r)toTDM.DA-1,-2,and-3canbeMeanwhile,theenhancementoftheacceptorsignificantlyexpectedtohavehigherradiationrates.AsshowninreducestheenergyofS1inAC-1,-2,and-3aswellasDA-1,-2,electrostaticpotentialmaps(FigureS9),thenitrogenatomsand-3,whichisconsistentwiththevariationtendencyinatthephenanthrolineinDA-2,DA-3,AC-2,andAC-3havewavelengths.Moreover,theenergiesofthecorrespondingobviousnegativepotential,whichcanattractthehydrogentripletstatesalsochangewiththevariationinS1;thus,thelargeatomsinthedonorstoformhydrogenbonds.Inaddition,theΔESTandsmallenergydifferencebetweenS1andT2arestillp-CNando-CNalsohaveobviousnegativepotentials,whilemaintained(asshowninFigureS5).Inaddition,onecanseeotherpartsmostlyhaveneutralorpositivepotentials;thisisfromthenaturaltransitionorbit(NTO)inFigureS6thatS1isconducivetotheformationofinclinedoredgepackinginatypicalchargetransfer(CT)stateforallmolecules.aggregation(asshowninFigureS10,crystalstructuresofAC-MoleculeswithDAasthedonorhaveamoresignificantLECNBPzandDA-CNBPz),avoidingACQcausedbymoreπ−π17−19component(>23%),whichwouldpromotetheradiationrate.stacking.Similarly,AC-1,-2,and-3andDA-1,-2,and-3ItshouldbenotedthattheparapositionofCNandthealsopresentsimilarcharacteristics,whichwillhelptoimprovesubstitutionofphenanthrolinedonotchangetheintrinsicthefluorescenceefficiencyofthesemoleculesincrystalsorpropertiesofsingletandtripletexcitedstatesbutonlyslightlyfilms.Inaddition,thecalculatedreorganizationenergyandtheenhancetheCTpropertiesofeachexcitedstate,whichisacorrespondingcontributionanalysisofvibrationmodesforS1necessaryconditionforTADF.(seeFigureS11)indicatethatthep-CNincreasesC−CandInaddition,theproportionofLEintheS1stateisdirectlyC−Nstretchingmodesinthehigh-frequencyregion,whiletherelatedtoelectron−holeoverlapandtransitiondipolemomentsubstitutionofphenanthrolinehaslittleeffectonthedensity.FigureS7showstheelectronholeandisosurfaceofthereorganizationenergy.Thedecayratesofexcitedstatesandxcomponentofthetransitiondipolemoment(TDM)densitythefluorescenceefficiencyarecalculatedasshowninTables[T(r)].Onecanseethatthep-CNemitterincreasestheS2−S4.OnecanseethattheT−Sup-conversion(>105s−1)x21centroiddistancebetweenelectronsandholes,whichfurtherplaysadominantroleintheRISCprocessinallmoleculesdueleadstoadecreaseinthecontributionofTx(r),whilethetothelargeSOCconstantsandthesmallenergydifference.Itsubstitutionofphenanthrolineshowstheoppositeinfluence.InshouldbenotedthattheeffectiveRISCrateiscalculatedaddition,DA-1,-2,and-3haveasmallercentroiddistancewheretherateofup-conversionfromT1toS1isalsoincluded1897https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure5.Adiabaticexcitationenergyofseverallow-lyingstatesforDA-3calculatedonthebasisoftheoptimizedgeometryin(a)tolueneand(b)theamorphousstate.Geometricstructureandtransitioncharacteristicsforsingletandtripletstatesin(c)tolueneand(d)theamorphousstate(isovalue=0.02).ThevaluesbelowthearrowsaretheLEproportioninexcitation.andthethermaldistributionofbothtripletstatesisconsideredgeometrystructuresoftheS1statesfor12embeddedand12asshownintheSupportingInformation(seetheeqs9−11andexposedmoleculesareoptimizedbytheQM/MMmethod.ItTableS8).Inparticular,DA-3calculatedintolueneexhibitsaisfoundthatthecalculatedemissionwavelengthofDA-3isinfluorescencewavelengthof757nmandafluorescencetherangeof800−1100nm,andtheoscillatorintensityisefficiencyof7.55%aswellasafastRISCprocess,whichbetween0.002and0.100.TheaverageemissionwavelengthofpredictsapromisingapplicationasaNIR-TADFemitter.TheDA-3intheamorphousstateis903nm,andtheoscillatordetailedlight-emittingpropertyofDA-3intolueneandtheintensityis0.065.Inaddition,thewavelengthdifferenceoftheamorphousstateissimulatedinthefollowingsection.fourmoleculesoptimizedinthefirstclusterissmall,andtheMultiscaleSimulationoftheLuminescenceMechanismofDA-3.emissionwavelengthoftheDA-3−1−1moleculeat930nmisThemoleculardynamics(MD)methodisadoptedtoobtainclosertotheaveragevalue,whichischosenasthetheamorphousconfiguration,whichisrealizedintherepresentativestructureforthefollowingcalculationofthe42GROMACSprogram.ThedetailedstepsofMDsimulationphotophysicalproperties.aregivenintheSupportingInformation,andtheamorphousTheadiabaticexcitationenergiesandNTOsofDA-3arestructureisshowninFigureS12.Similarly,theONIOMmodelshowninFigure5.Comparedwiththatintoluene,theenergycombinedwiththeQM/MMmethodisusedtoevaluatetheofS1issignificantlyreducedintheamorphousstate,whilethephotophysicalpropertiesofthismolecule(thecomputationalenergiesofT1andT2arebasicallyunchanged,whichleadstoamodelshowninFigure4).DuetothedisorderofthedrasticdecreaseinΔEST(0.020eV)andasignificantincreaseamorphousstate,representativemodelsincludingembeddedintheenergydifferencebetweenT2andS1(0.276eV).TheandexposedcasesareselectedforQM/MMcalculationsandcalculationresultsshowthataggregationcanreducetheenergy43,44statisticsfromthesixclusters(asshowninFigureS13).TheofS1,whichisconsistentwithourpreviouswork.In1898https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetteraddition,theNTOanalysiswasperformedonthelow-lyingflexibleindisorderedstackingmode,whichisunfavorabletoexcitedstatesintolueneandtheamorphousstate,andthetherapidradiationdecay.BecauseKrisproportionaltothecorrespondingtransitioncharacteristicsareshowninFigureTDMdensityofS1→S0,theatomicrepresentationofthex5b.OnecanseethatS1isatypicalCTstateinbothtoluenecomponentoftheTDMmatrix(accountingfor>90%oftheandtheamorphousstate.However,thecontributionoftheCTtotalTDM)andtheisosurfaceofTx(r)areanalyzedasshowncomponentisdifferent.TheLEcomponentcontributionofS1inFigure7b.Thevalueofthematrixelementdeviatingfromintheamorphousstate(7.8%)ismuchsmallerthanthatinthediagonalisclosetozero.Hence,thetwoatomswithlongtoluene(23.5%),implyingthatasmallerΔESTcanbeobtaineddistancescontributelittletothexcomponentofTDM,andintheamorphousstate.Similarly,theLEcontributionofT1mostofthevaluesarenegative(blue).Itisworthnotingthatdecreasessignificantly,whilethecontributionofT2increasesthecontributionofthematrixelementsatthejunctionsignificantly.Wealsonotethatthedihedralanglebetweenthebetweentheacceptoranddonorintheamorphousstateisdonorandacceptorforeachexcitedstateissignificantlyclosetozero,andthecontributionofotheratomsisdarkerincreasedbyabout50−60°forthemoleculechangingfromthethanthatintoluene.ThecorrespondingTx(r)isalmostnottoluenetotheamorphousstate.Therefore,itisbelievedthatdistributedatthelinkbetweenthedonorandacceptor,andthethechangeintheD−Adihedralanglecausedbydifferentcontributionofotheratomsalsosignificantlydecreased.Thisissurroundingenvironmentsisthemainreasonforthedifferencebecausetheincreaseinthedihedralanglebetweenthedonorinthetransitionproperties.andacceptorweakenstheconjugationpropertyoftheacceptorFortheRISCprocess,theenergygapandSOCconstantintheamorphousstateandreducestheoverlapoftheelectronbetweenS1andTnplayacrucialrole.Onthebasisoftheandhole.Therefore,theTDMintheamorphousphasecalculatedenergydifferenceandSOCconstants,theISCratedecreasedsignificantly(1.77D)comparedwiththatintoluene(KISC)andthereverseISC(RISC)rate(KRISC)arecalculated(5.56D).Onthecontrary,asmallnonradiationrateisalsoan(seeFigure6).Comparedwiththatintoluene,theKISCimportantfactorforimprovingthefluorescenceefficiency.TherelationshipofthereorganizationenergiesversusnormalvibrationmodesisillustratedinFigure7c.Onecanseethatthecorrespondingvibrationmodesintheamorphousstateandtoluenearesimilar.Thelow-frequencymodesmainlycorrespondtotheout-of-planewaggingvibrationofthedonor,andtheintermediatefrequencymodesarefromtheC−CandC−Nstretchingvibrationintheacceptor.Thenonradiationrateintheamorphousstate(2.38×108s−1)isalmostthesameasthatintoluene(2.73×108s−1)(Figure6).ThemainreasonwhyΦFintheamorphousstate(1.14%)islowerthanthatinthesolvent(7.55%)isthedecreaseintheradiationrate.Onthebasisofourcalculationresults,DA-3isagoodcandidatefortheNIR-TADFemitters.DetailedFigure6.Calculatedradiative(Kr)andnonradiativerates(Knr)fromexperimentalverificationisexpected.S1toS0,radiative(Krt)andnonradiativerates(Knrt)fromT1toS0,ExperimentalMeasurementsofthePhotophysicalPropertiesofandintersystemcrossing(KISC)andreverseintersystemcrossingDA-3inToluene.ThesyntheticprocedureofDA-3isdepicted(KRISC)ratesbetweensinglet(S1)andtripletexcited(T1andT2)inScheme1,andthedetailsareprovidedintheSupportingstates.Information.AsshowninScheme1,[4-(2,2-dimethyl-3a,11b-dihydro-1,3-dioxa-7,8-diaza-cyclopenta[l]phenanthren-6-yl)-betweenTandS(1.53×106s−1)isincreasednearly2-phenyl]-di-p-tolyl-aminewasunprotectedtoyield2-[4-(di-p-11foldduetothesharpdecreaseinΔESTintheamorphousstate,tolyl-amino)-phenyl]-[1,10]phenanthroline-5,6-dione.After-andtheup-conversionchannelfromT1toS1isalsoopenedward,thecondensationreactionbetween2-[4-(di-p-tolyl-(K=5.19×105s−1),althoughtheSOCconstantisonlyamino)-phenyl]-[1,10]phenanthroline-5,6-dioneand2,3-dia-RISC0.059cm−1.However,theKandKfromTtoSaremino-terephthalonitriletookplacetoaffordthetargetmaterialISCRISC21negligibleduetotheincreaseintheenergydifference.InDa-pCNPPz.Allofthechemicalstructuresweresuccessfullyaddition,theradiative(Krt)andnonradiativedecayrates(Knrt)characterizedandconfirmedvianuclearmagneticresonancefromTtoSarecalculated.AlthoughK(2.65×103s−1)in(NMR)spectroscopy(FiguresS14−S19).Inaddition,the10nrttheamorphousstateisnearly2ordersofmagnitudelargerthanultraviolet−visible(UV−vis)absorptionandphotolumines-thatintoluene(6.38×10s−1),itstillcannotcompetewithcence(PL)spectraofDA-3inadilutetoluenesolutionareKRISC.showninFigure8a.Whentheexcitationwavelengthis550nm,ThefluorescenceefficiencyiscloselyrelatedtotheNIRemissionwithpeaksat730nmisobservedintoluene.Insurroundingenvironmentofthemolecule.Theinteractiontoluene,theenergiesofS1andT1are1.71and1.58eV,betweeneachmoleculeintheamorphousstateisshowninrespectively,andtheΔESTofDA-3intolueneis0.13eV(seeFigure7a.Becausetheπ-conjugatedacceptorsarequiteplanar,Figure8b).Inaddition,thetransientPLdecayofDA-3inthemoleculestendtoformπ−πstackingattheacceptor,suchtolueneismeasured,whichshowedadualemissionattenuationasamorphous-1withalargeinteractionenergyof−112.28kJ/distributionintherangeof14μs,indicatingtheirdelayedmol.However,complexedgestackinginthedonorisfluorescencecharacteristics.TheΦFanddelayedfluorescencegeneratedfortheflexiblemoleculesinwhichtheCH−πefficiency(ΦDF)components,aswellasthepromptdecayinteractiondominatesasshownforamorphous-2,-3,and-4,lifetime(τF)anddelayeddecaylifetime(τDF)canbeobtainedwithinteractionenergiesof−41.76,−38.19,and−39.22kJ/fromthetransientPLdecaycurves.KrandKnrarecalculatedasmol,respectively.ThedihedralanglebetweenDandAismore6.0×107and2.40×108s−1,respectively.Therefore,theΦinF1899https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

7TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure7.Intermolecularinteractionandstackingpatternforamorphous-x(x=1−6)intheamorphousstatedescribedbytheIGMmethod.(b)xcomponentofthetransitiondipolemomentandtheisosurfaceofthexcomponentofthetransitiondipolemomentdensity[Tx(r)]intolueneandintheamorphousstate.(c)Reorganizationenergyvsnormalvibrationmodeandthevibronicdecouplingeffectofelectronsintolueneandtheamorphousstate.Scheme1.SyntheticProceduresandChemicalStructureofDA-pCNPPz(DA-3)tolueneunderanaerobicconditionsis20.0%.ThisfullyInsummary,thelight-emittingmechanismoftwoNIR-validatesourtheoreticalsimulationresults,anditisalsotheTADFemitters(AC-CNBPzandDA-CNBPz)isstudiedonhighestΦFofthepreviouslyreportedTADFemittersinthebasisoffirst-principlescalculationandexcitedstatetolueneexceeding700nm.dynamicsinvestigationinthispaper.Theoreticalsimulation1900https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

8TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure8.(a)NormalizedUV−visabsorptionandemissionspectraofDA-3intolueneatroomtemperature.(b)Normalizedfluorescenceandphosphorescencespectraat77K.(c)TransientPLdecaycurvesofDA-3intolueneatroomtemperature.resultsintolueneagreewellwithexperimentalvalues,which■AUTHORINFORMATIONprovesthereliabilityofourtheoreticalmethods.Inaddition,CorrespondingAuthorssomenewacceptorgroupsaredesignedbyregulatingtheJianFan−InstituteofFunctionalNano&SoftMaterialssubstitutionpositionofCNorintroducingthephenanthroline(FUNSOM),JiangsuKeyLaboratoryforCarbon-Basedunit,and44D−AandD−A−DtypemoleculesaredesignedFunctionalMaterials&Devices,SoochowUniversity,Suzhou,andstudiedtheoretically.ItindicatesthattheemissionJiangsu215123,China;orcid.org/0000-0001-5009-wavelengthofthemoleculeintolueneissignificantlyred-9588;Email:jianfan@suda.edu.cnshiftedwhenCNischangedfromtheorthopositiontotheChuan-KuiWang−ShandongProvinceKeyLaboratoryofparapositionorwhenaphenanthrolinegroupisintroducedMedicalPhysicsandImageProcessingTechnology,Schoolofintotheacceptor.ThecombinationofbothstrategieswouldPhysicsandElectronics,ShandongNormalUniversity,Jinan250014,China;Email:ckwang@sdnu.edu.cnfurtherred-shifttheemissionwavelength.Inaddition,T2−S1LiliLin−ShandongProvinceKeyLaboratoryofMedicalup-conversionplaysadominantroleforallmoleculesdesignedPhysicsandImageProcessingTechnology,SchoolofPhysicsduetothelargeSOCvaluesandthesmallenergydifference.andElectronics,ShandongNormalUniversity,Jinan250014,Consequently,anefficientNIR-TADFemitterDA-3isChina;orcid.org/0000-0002-5319-713X;Email:linll@theoreticallypredictedwithawavelengthof757nmandasdnu.edu.cnΦFof7.55%intolueneaswellasawavelengthof930nmandaAuthorsΦFof1.14%intheamorphousstate.Experimentalmeasure-mentconfirmstheTADFpropertyofDA-3withafluorescenceKaiZhang−ShandongProvinceKeyLaboratoryofMedicalPhysicsandImageProcessingTechnology,SchoolofPhysicswavelengthof730nmandaΦFashighas20%intoluene,andElectronics,ShandongNormalUniversity,Jinan250014,whichisthehighestvaluereportedforNIR-TADFemitters.China;orcid.org/0000-0002-9629-5995Ourtheoreticalsimulationcouldnotonlyrevealthelight-FeiYang−InstituteofFunctionalNano&SoftMaterialsemittingmechanismofTADFmoleculesbutalsoprovide(FUNSOM),JiangsuKeyLaboratoryforCarbon-BasedreliableguidanceforhighlyefficientNIR-TADFmolecularFunctionalMaterials&Devices,SoochowUniversity,Suzhou,design.Jiangsu215123,ChinaYuchenZhang−ShandongProvinceKeyLaboratoryof■MedicalPhysicsandImageProcessingTechnology,SchoolofASSOCIATEDCONTENTPhysicsandElectronics,ShandongNormalUniversity,Jinan*sıSupportingInformation250014,ChinaTheSupportingInformationisavailablefreeofchargeatYuyingMa−ShandongProvinceKeyLaboratoryofMedicalhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03805.PhysicsandImageProcessingTechnology,SchoolofPhysicsandElectronics,ShandongNormalUniversity,Jinan250014,Computationalapproach,computationaldetailsforMDChinasimulations,synthesisdetails,ONIOMmodelforAC-JianzhongFan−ShandongProvinceKeyLaboratoryofCNBPzandDA-CNPBz,colordrawingoftheplaneofMedicalPhysicsandImageProcessingTechnology,SchoolofLOL-π,fragmentorbitalanalysis,isosurfacemapofPhysicsandElectronics,ShandongNormalUniversity,Jinanlocalizedorbitallocator-π,adiabaticexcitationenergy,250014,China;orcid.org/0000-0003-2176-2621transitioncharacteristics,thexcomponentoftheCompletecontactinformationisavailableat:transitiondipolemoment,intramolecularinteractions,https://pubs.acs.org/10.1021/acs.jpclett.0c03805electrostaticpotentialmaps,intermolecularinteractionandstackingpattern,HRfactorsversusreorganizationenergies,solid-statestructureofDA-3,representativeAuthorContributionsQM/MMmodelsincludingtheembeddedandexposed§K.Z.andF.Y.contributedequallytothiswork.casesindifferentclusters,NMRspectrum,interconver-sionanddecayrates,dihedralangles,andnetchargeNotestransfer(PDF)Theauthorsdeclarenocompetingfinancialinterest.1901https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

9TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter■(15)Zhao,B.;Wang,H.;Han,C.;Ma,P.;Li,Z.;Chang,P.;Xu,H.ACKNOWLEDGMENTSHighlyEfficientDeep-RedNon-DopedDiodesBasedonaT-ShapeThisworkissupportedbytheNationalNaturalScienceThermallyActivatedDelayedFluorescenceEmitter.Angew.Chem.,FoundationofChina(Grants21933002,11974216,11904210,Int.Ed.2020,59,19042−19047.and21871199)andtheShandongProvincialNaturalScience(16)Zhou,X.;Xiang,Y.;Gong,S.;Chen,Z.;Ni,F.;Xie,G.;Yang,Foundation(ZR2019MA056).C.-K.W.acknowledgestheC.SimpleConstructionofDeep-RedHexaazatrinaphthylene-BasedsupportoftheTaishanScholarProjectofShandongProvince,ThermallyActivatedDelayedFluorescenceEmittersforEfficientandJianzhongFanacknowledgestheProjectfundedbyChinaSolution-ProcessedOLEDswithaPeakat692nm.Chem.Commun.PostdoctoralScienceFoundation(GrantNo.2018M642689).2019,55,14190−14193.(17)Li,C.;Duan,R.;Liang,B.;Han,G.;Wang,S.;Ye,K.;Liu,Y.;■Yi,Y.;Wang,Y.Deep-RedtoNear-InfraredThermallyActivatedREFERENCESDelayedFluorescenceinOrganicSolidFilmsandElectroluminescent(1)Tang,C.W.;VanSlyke,S.A.OrganicElectroluminescentDevices.Angew.Chem.,Int.Ed.2017,56,11525−11529.Diodes.Appl.Phys.Lett.1987,51,913−915.(18)Xue,J.;Liang,Q.;Wang,R.;Hou,J.;Li,W.;Peng,Q.;Shuai,(2)Uoyama,H.;Goushi,K.;Shizu,K.;Nomura,H.;Adachi,C.Z.;Qiao,J.HighlyEfficientThermallyActivatedDelayedHighlyEfficientOrganicLight-EmittingDiodesfromDelayedFluorescenceviaJ-AggregateswithStrongIntermolecularChargeFluorescence.Nature2012,492,234−238.Transfer.Adv.Mater.2019,31,1808242.(3)Liu,H.;Zeng,J.;Guo,J.;Nie,H.;Zhao,Z.;Tang,B.Z.High-(19)Zhang,K.;Liu,J.;Zhang,Y.;Fan,J.;Wang,C.-K.;Lin,L.PerformanceNon-DopedOLEDswithNearly100%ExcitonUseandTheoreticalStudyoftheMechanismofAggregation-CausedNegligibleEfficiencyRoll-Off.Angew.Chem.,Int.Ed.2018,57,9290−QuenchinginNear-InfraredThermallyActivatedDelayedFluores-9294.cenceMolecules:Hydrogen-BondEffect.J.Phys.Chem.C2019,123,(4)Chen,J.X.;Tao,W.W.;Chen,W.C.;Xiao,Y.F.;Wang,K.;24705−24713.Cao,C.;Yu,J.;Li,S.;Geng,F.X.;Adachi,C.;Lee,C.-S.;Zhang,X.-(20)Yang,Z.;Mao,Z.;Xie,Z.;Zhang,Y.;Liu,S.;Zhao,J.;Xu,J.;H.Red/Near-InfraredThermallyActivatedDelayedFluorescenceChi,Z.;Aldred,M.P.RecentAdvancesinOrganicThermallyOLEDswithNear100%InternalQuantumEfficiency.Angew.Chem.,ActivatedDelayedFluorescenceMaterials.Chem.Soc.Rev.2017,46,Int.Ed.2019,58,14660−14665.915−1016.(5)Tao,Y.;Yuan,K.;Chen,T.;Xu,P.;Li,H.;Chen,R.;Zheng,C.;(21)Kim,J.H.;Yun,J.H.;Lee,J.Y.RecentProgressofHighlyZhang,L.;Huang,W.ThermallyActivatedDelayedFluorescenceEfficientRedandNear-InfraredThermallyActivatedDelayedMaterialsTowardstheBreakthroughofOrganoelectronics.Adv.FluorescentEmitters.Adv.Opt.Mater.2018,6,1800255.Mater.2014,26,7931−7958.(22)Yuan,Y.;Hu,Y.;Zhang,Y.X.;Lin,J.D.;Wang,Y.K.;Jiang,Z.(6)Cai,X.;Chen,D.;Gao,K.;Gan,L.;Yin,Q.;Qiao,Z.;Chen,Z.;Q.;Liao,L.S.;Lee,S.T.Over10%EQENear-InfraredJiang,X.;Su,S.J.Trade-Off”HiddeninCondensedStateSolvation:MultiradiativeChannelsDesignforHighlyEfficientSolution-ElectroluminescenceBasedonaThermallyActivatedDelayedProcessedPurelyOrganicElectroluminescenceatHighBrightness.FluorescenceEmitter.Adv.Funct.Mater.2017,27,1700986.Adv.Funct.Mater.2018,28,1704927.(23)Furue,R.;Matsuo,K.;Ashikari,Y.;Ooka,H.;Amanokura,N.;(7)Lin,T.C.;Sarma,M.;Chen,Y.T.;Liu,S.H.;Lin,K.T.;Chiang,Yasuda,T.HighlyEfficientRed-OrangeDelayedFluorescenceP.Y.;Chuang,W.T.;Liu,Y.C.;Hsu,H.F.;Hung,W.Y.;Tang,W.-EmittersBasedonStrongπ-AcceptingDibenzophenazineandC.;Wong,K.-T.;Chou,P.-T.ProbeExciplexStructureofHighlyDibenzoquinoxalineCores:towardaRationalPure-RedOLEDEfficientThermallyActivatedDelayedFluorescenceOrganicLightDesign.Adv.Opt.Mater.2018,6,1701147.EmittingDiodes.Nat.Commun.2018,9,3111.(24)Wang,S.;Cheng,Z.;Song,X.;Yan,X.;Ye,K.;Liu,Y.;Yang,(8)Liang,X.;Yan,Z.P.;Han,H.B.;Wu,Z.G.;Zheng,Y.X.;Meng,G.;Wang,Y.HighlyEfficientLong-WavelengthThermallyActivatedH.;Zuo,J.L.;Huang,W.PeripheralAmplificationofMulti-DelayedFluorescenceOLEDsBasedonDicyanopyrazinoPhenan-ResonanceInducedThermallyActivatedDelayedFluorescenceforthreneDerivatives.ACSAppl.Mater.Interfaces2017,9,9892−9901.HighlyEfficientOLEDs.Angew.Chem.2018,130,11486−11490.(25)Wang,S.;Yan,X.;Cheng,Z.;Zhang,H.;Liu,Y.;Wang,Y.(9)Zhang,D.;Cai,M.;Zhang,Y.;Zhang,D.;Duan,L.StericallyHighlyEfficientNear-InfraredDelayedFluorescenceOrganicLightShieldedBlueThermallyActivatedDelayedFluorescenceEmittersEmittingDiodesUsingaPhenanthrene-BasedCharge-TransferwithImprovedEfficiencyandStability.Mater.Horiz.2016,3,145−Compound.Angew.Chem.2015,127,13260−13264.151.(26)Kumsampao,J.;Chaiwai,C.;Chasing,P.;Chawanpunyawat,(10)Yu,H.;Song,X.;Xie,N.;Wang,J.;Li,C.;Wang,Y.ReversibleT.;Namuangruk,S.;Sudyoadsuk,T.;Promarak,V.ASimpleandCrystal-to-CrystalPhaseTransitionswithHigh-ContrastLuminescentStrongElectron-Deficient5,6-Dicyano[2,1,3]benzothiadiazole-AlterationsforaThermallyActivatedDelayedFluorescenceEmitter.CoredDonor-Acceptor-DonorCompoundforEfficientNearInfraredAdv.Funct.Mater.2021,31,2007511.ThermallyActivatedDelayedFluorescence.Chem.-AsianJ.2020,15,(11)Ahn,D.H.;Kim,S.W.;Lee,H.;Ko,I.J.;Karthik,D.;Lee,J.Y.;3029−3036.Kwon,J.H.HighlyEfficientBlueThermallyActivatedDelayed(27)Zhang,Y.L.;Ran,Q.;Wang,Q.;Liu,Y.;Hanisch,C.;Reineke,̈FluorescenceEmittersBasedonSymmetricalandRigidOxygen-S.;Fan,J.;Liao,L.S.High-EfficiencyRedOrganicLight-EmittingBridgedBoronAcceptors.Nat.Photonics2019,13,540−546.DiodeswithExternalQuantumEfficiencyCloseto30%Basedona(12)Wu,T.L.;Huang,M.J.;Lin,C.C.;Huang,P.Y.;Chou,T.Y.;NovelThermallyActivatedDelayedFluorescenceEmitter.Adv.ChenCheng,R.W.;Lin,H.W.;Liu,R.S.;Cheng,C.H.DiboronMater.2019,31,1902368.Compound-BasedOrganicLight-EmittingDiodeswithHigh(28)Congrave,D.G.;Drummond,B.H.;Conaghan,P.J.;Francis,EfficiencyandReducedEfficiencyRoll-Off.Nat.Photonics2018,12,H.;Jones,S.T.;Grey,C.P.;Greenham,N.C.;Credgington,D.;235−240.Bronstein,H.ASimpleMolecularDesignStrategyforDelayed(13)Wang,Y.Y.;Zhang,Y.L.;Tong,K.;Ding,L.;Fan,J.;Liao,L.S.Fluorescencetoward1000nm.J.Am.Chem.Soc.2019,141,18390−HighlyEfficientRedThermallyActivatedDelayedFluorescence18394.MaterialsBasedonaCyano-ContainingPlanarAcceptor.J.Mater.(29)Kothavale,S.;Lee,K.H.;Lee,J.Y.IsomericQuinoxalinedi-Chem.C2019,7,15301−15307.carbonitrileasColor-ManagingAcceptorsofThermallyActivated(14)Kim,D.-H.;D’aléo,A.;Chen,X.K.;Sandanayaka,A.D.;Yao,DelayedFluorescentEmitters.ACSAppl.Mater.Interfaces2019,11,D.;Zhao,L.;Komino,T.;Zaborova,E.;Canard,G.;Tsuchiya,Y.;17583−17591.etal.High-EfficiencyElectroluminescenceandAmplifiedSponta-(30)Zhang,Y.;Wu,J.;Song,J.;Chen,Z.;He,J.;Wang,X.;Liu,H.;neousEmissionfromaThermallyActivatedDelayedFluorescentChen,S.;Qu,J.;Wong,W.Y.AchievingHigh-PerformanceSolution-Near-InfraredEmitter.Nat.Photonics2018,12,98−104.ProcessedDeep-Red/Near-InfraredOrganicLight-EmittingDiodes1902https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

10TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterwithaPhenanthroline-BasedandWedge-ShapedFluorophore.Adv.Electron.Mater.2019,5,1800677.(31)Zheng,X.;Peng,Q.;Zhu,L.;Xie,Y.;Huang,X.;Shuai,Z.UnravelingtheAggregationEffectonAmorphousPhaseAIELuminogens:AComputationalStudy.Nanoscale2016,8,15173−15180.(32)Ma,H.;Yu,H.;Peng,Q.;An,Z.;Wang,D.;Shuai,Z.HydrogenBonding-DnducedMorphologyDependenceofLong-LivedOrganicRoom-TemperaturePhosphorescence:AComputa-tionalStudy.J.Phys.Chem.Lett.2019,10,6948−6954.(33)Zhang,K.;Zhang,Y.;Ma,Y.;Fan,J.;Wang,C.-K.;Lin,L.Solid-StateEffectInducedThermallyActivatedDelayedFluorescencewithTunableEmission:AMultiscaleStudy.J.Phys.Chem.A2020,124,8540−8550.(34)Fan,J.;Zhang,Y.;Zhang,K.;Liu,J.;Jiang,G.;Lin,L.;Wang,C.-K.EffectsofIntramolecularandIntermolecularInteractionsonExcitedStatePropertiesofTwoIsomericCuComplexeswithAIEandTADFMechanismsinSolidPhase:AQM/MMStudy.Org.Electron.2019,71,113−122.(35)Lin,L.;Fan,J.;Wang,C.-K.TheoreticalPerspectiveforInternalQuantumEfficiencyofThermallyActivatedDelayedFluorescenceEmitterinSolidPhase:AQM/MMStudy.Org.Electron.2017,51,349−356.(36)Fan,J.;Zhang,Y.;Zhang,K.;Liu,J.;Jiang,G.;Li,F.;Lin,L.;Wang,C.-K.TowardsBoostingtheExcitonLifetimeandEfficiencyofNear-InfraredAggregationInducedEmitterswithHybridizedLocalandChargeTransferExcitedStates:AMultiscaleStudy.J.Mater.Chem.C2019,7,8874−8887.(37)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Petersson,G.A.;Nakatsuji,H.;etal.Gaussian16,rev.A.03;Gaussian,Inc.:Wallingford,CT,2016.(38)Shuai,Z.;Peng,Q.ExcitedStatesStructureandProcesses:UnderstandingOrganicLight-EmittingDiodesattheMolecularLevel.Phys.Rep.2014,537,123−156.(39)Peng,Q.;Yi,Y.;Shuai,Z.;Shao,J.ExcitedStateRadiationlessDecayProcesswithDuschinskyRotationEffect:FormalismandImplementation.J.Chem.Phys.2007,126,114302.(40)Niu,Y.;Peng,Q.;Shuai,Z.Promoting-ModeFreeFormalismforExcitedStateRadiationlessDecayProcesswithDuschinskyRotationEffect.Sci.China,Ser.B:Chem.2008,51,1153−1158.(41)Xiao,M.;Lu,T.Generalizedchargedecompositionanalysis(GCDA)method.J.Adv.Phys.Chem.2015,4,111.(42)Abraham,M.J.;Murtola,T.;Schulz,R.;Pall,S.;Smith,J.C.;́Hess,B.;Lindahl,E.SoftwareX2015,1,19.(43)Fan,J.;Lin,L.;Wang,C.-K.ExcitedStatePropertiesofNon-DopedThermallyActivatedDelayedFluorescenceEmitterswithAggregation-InducedEmission:aQM/MMStudy.J.Mater.Chem.C2017,5,8390−8399.(44)Jiang,G.;Li,F.;Kong,X.;Fan,J.;Song,Y.;Wang,C.-K.;Lin,L.SuppressionofAggregationCausedQuenchinginU-ShapedThermallyActivatedDelayedFluorescenceMolecules:Tert-ButylEffect.J.Lumin.2020,219,116899.1903https://dx.doi.org/10.1021/acs.jpclett.0c03805J.Phys.Chem.Lett.2021,12,1893−1903

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭