Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown

Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown

ID:81816780

大小:3.28 MB

页数:7页

时间:2023-07-21

上传者:U-14522
Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown_第1页
Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown_第2页
Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown_第3页
Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown_第4页
Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown_第5页
Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown_第6页
Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown_第7页
资源描述:

《Laser Tuning in Layered h ‑ BN Crystals - Ding et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterLaserTuninginLayeredh‑BNCrystalsYingDing,WeiZheng,*YanmingZhu,MinggeJin,andFengHuangCiteThis:J.Phys.Chem.Lett.2021,12,3795−3801ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Integratedopticsshowsgreatpotentialinthecurrentopticalcommunicationsystems,sensortechnology,opticalcomputers,andotherfields.Tunablelasertechnologywithinacertainrangeisthekeytoachievingon-chipopticalintegration;torealizewhich,Ramanscatteringisacompetitivemethodthatcaneffectivelytransferincidentlaserenergytoopticalphononsduetothephoton−phononinteraction.Here,wetakehexagonalboronnitrideastheenergyconversionmedium,andbasedontheangle-resolvedpolarizedRamanspectroscopy,itisfoundthatwhenlaserpolarizationvectorei⊥caxis,thespectrumobtainsmaximalscatteringacrossthecrosssectionandaminimaldepolarizationratio.Atroomtemperature,h-BNobtainsanoutputsignalwithawavelengthof522.8nmandafull-widthathalf-maximumof0.24nmundertheexcitationof488nmpumplaser,andthedepolarizationratiois0.09(theoretically,itis0,andthisdifferenceisduetoexperimentalerrors).Andthen,withinthetemperaturerangeof80∼420K,thescatteredlightwavelengthshowsahigh-precisionshiftof0.006nm/25K,indicatingthatcontinuouswavelengthtuninghasbeensuccessfullyachievedinh-BN.Inrecentyears,drivenbythedevelopmentofopticalcomputingtechnology,researchonmonolithicphotonicsandoptoelectronicintegrationtechnologyhasgraduallybecomeahotfocus,withmanystudiesbeingperformedsuchasthedevelopmentofintegratedlasersources,theexplorationofwaveguidegratingarraywavelengthdivisionmultiplexing(WDM)technology,andfurtherunderstandingofopticalandelectricalcomponents,suchasopticalmodulators1−3andcouplers.TheinnovationofWDMtechnologyisarepresentativeone.Astraditionalsingleinputandoutputfunctionsinchipsaredifficulttomeettheneedsofintegratedopticalcircuitsintheaspectsofminiaturizationandhighefficiency,arapiddevelopmentoftunablelaserresearchis4,5urgentlyneeded(showninFigure1a).CommonlaserFigure1.Theoverallideaofthepaper.(a)Anexampleofanon-chiptuningtechnologycurrentlytakesalaser,aworkingmedium,integratedopticaldevice.ThelightgeneratedbythelaserisguidedDownloadedviaUNIVOFCALIFORNIASANTABARBARAonMay15,2021at21:01:17(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.andtheinteractionbetweenthemasthemainbasisandgetsintoawaveguide,modulated,andcoupledtoanopticalfiberandaresultsachievedthroughthemodificationoftheworkingphotodiode.(b)Lasertuningconcept.Asinglewavelengthsemi-environment,theinsertionofopticalcomponents,ortheconductorlaserisusedtoprovidestableincidentlaser.Withthecontinuousvariableradiationwithinacertainrangegeneratedchangeofworkingmediumtemperature,theinputlaserwavelengthbytheirinteraction.6−8Comparedwiththosemethods,lasercanbetuned.(c)TheprincipleofRamanscattering.(d)Theschematicdiagramoflasertuningtoberealizedinthiswork.tuningbasedontheprincipleofvariable-temperatureRamanscatteringisaverycompetitivetechnology.Whenanexcitationtoselectapotentialmaterialasthemediumtoachieveideallightsourceoffixedwavelength(hvI)isirradiatedonalasertuning(Figure1d).VanderWaalslayeredmaterialswithmedium,theworkingmediumwillgenerateanopticalphononanoutstandingperformanceinthefieldofoptoelectronic(hvq)andemitaphotonwithenergyhvS(hvS=hvI−hvq)atthesametime.Asthetemperatureofthetestenvironmentchanges,effectssuchasthephononanharmoniceffect,thermalReceived:March25,2021expansioneffect,andsubstrateeffectwillmaketheoutputAccepted:April8,2021opticalphononwavelengthadjustablecontinuouslywithahighPublished:April13,20219,10qualitywithinacertainrange(asshowninFigure1b,c).Forthistechnology,theworkingmediumandadjustingoutputlightqualityarechangeable,whichmakesitnecessary©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpclett.1c009583795J.Phys.Chem.Lett.2021,12,3795−3801

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterdeviceshaveattractedresearchattention,especiallyastherehasbeenmoreandmorestudiesontheirbasicstructureand11−15opticalandelectricalpropertiesrecently.Inearlywork,continuousandstablelasertuninghasbeenachievedinlayered16,17hexagonalMoS2andWS2.However,therearestillsomeproblemsleftforthemsuchasseriousself-absorption,lowcrystalthermalconductivity,difficultselectionofanisotropicpolarizationcrossplane,andpoorstability.Therefore,theproblemsmentionedaboveshouldbeavoidedifpossiblewhenselectingtuningmaterialsinsubsequentresearch.BoronnitrideisamemberofvanderWaalslayeredmaterials.Withawidebandgapof5.9eVandahighthermalconductivityof390Wm−1K−1,theself-absorptionofphotogeneratedcarriersisnolongeraproblem.Itisexpectedtobecomeamorestable18,19andexcellentlasertuningmaterial.Basedonpreviouswork,thispaperselectshexagonalboronnitride(h-BN),whichisalsoanisotropicout-of-plane,astheresearchobject.Thefirststepoftheresearchproceduresistodealwiththeproblemoflaserdepolarization.BasedonthetheoreticalanalysisoftheRamanselectionruleonh-BN,thephysicalprocessofinelasticscatteringgeneratedwhenthelaserFigure2.Responsesignalspectrumoftheexperimentalh-BNisincidentonthesampleisclarified,andcombinedwithanobtainedby488nmpumplaserexcitationinalargerange.Theangle-resolvedpolarized(ARP)Ramanexperiment,theresponsesignalwavelengthis522.8nm,andthefwhmis0.24nm.optimalgeometricconfigurationofthescatteredlightwithAftermathematicaltransformation,theabscissacorrespondstothehighdensityandefficiencyisdiscussedtoensurethatthewavenumbercoordinateoftheupperRamanspectrum,whichcanbescatteredlighthasgoodlinearpolarizationcharacteristics.identifiedastheE2gvibrationmodewhosevibrationbehaviorisshowninthisillustration.Then,theh-BNlasertuningexperimentiscarriedoutunderthispolarizationangleandconfiguration.Thetemperature25axis.ThestructureisshowninFigure3a.Fromthelook-upcontroladjustmentofitsstableoutputpowerintherangeoftableofthesymmetryoftheh-BNpointgroup,wecanseethat80−420Kisrealizedwithatuningaccuracyof0.006nm/25K.Thisadjustmentaccuracyisbetterthantheadjustmenteffectijjdd0yzztheRamantensorcorrespondingtoE2gmodeisjjdd−0zz,inMoS2andWS2,whichhasprovedthegreatpotentialofvank000{derWaalslayeredmaterialsinthefieldoflasertuning.whichisdoubledegenerate.AccordingtotheclassicalRamanAccordingtothedescriptionabove,duetothelargebandselectionruleI∝|e•R•e|2ofthescatteringcrosssection,itisgapofh-BN,thereisnoneedtoconsiderlightabsorptionofcanbeknownthatwhenthepolarizationvectorandRamanthesampleforthe488nmexcitationlightsourceusedinthistensorofincidentlightandscatteredlightaregiven,theexperiment.Therefore,wefirstfocusonhowincidentlighttestRamanscatteringintensityisproportionaltothesquareoftheconfigurationaffectsthequalityofobtainedscatteredlight.productoftheirabsolutevalue.26,27DuetodifferentsymmetryWhenthe488nmpumplaserisincidentonthesurfaceofh-ofthein-planestructureandout-of-planestructureoftheBN,onlyonesingleidentifiablesignalwithafull-widthathalf-sample,thepolarizationatthebasalplane(c-plane)andcrossmaximum(fwhm)of0.24at522.8nmisobservedinalargeplane(m-plane)ofh-BNarediscussed,respectively.Forthedetectionrange(asshowninFigure2).Accordingtothem-planebackscatteredparallelconfiguration,whentheincidentprincipleofRamanscatteringandtherelationshipbetweenlightisincidentalongtheh-BNcrossplane(ki∥a-axis,ei∥c-wavelengthandwavenumber,theresponsesignalatthisplaceaxis),thepolarizationvectorsoftheincidentlightandisequivalenttotheRamanactivehigh-energyphononmodescatteredlightarebothei⃗=(0,sinθ,cosθ),wheretheEofh-BNat1365cm−1intheRamanspectrum.20,21This2gpolarizationangleθistheanglebetweeneiandthec-axisandvibrationisarelativemotionofBandNatomsintheplane,thescatteringintensityiscalculatedasI∼|d|2sin4θ.Forthec-whosemodelisgivenintheinsetofFigure2.Thisresponseofplaneexperiment,whentheincidentlightisincidentalongtheasinglevibrationmodefacilitatessubsequentsignalrecog-samplesurface(ki∥c-axis,ei∥a-axis),thepolarizationvectorsnitioninlasertuning.oftheincidentlightandscatteredlightarebothei⃗=(cosω,sinWiththesingleresponsesignalE2gmodeastheenergyω,0),whereωistheanglebetweeneiandthea-axis,andtheexchangemedium,theefficiencyofscatteredlightbecomesourscatteringintensityisI∼|d|2.28,29Basedonthediscussionnextfocus.ThisresearchiscarriedoutthroughARPabove,itcanbepredictedthattheRamanscatteringintensityspectroscopy.AccordingtoconsiderableRamanscatteringandpolarizationanglewillnotshowthesamedependencestudiesofvanderWaalslayeredmaterials,itcanbefoundthatrelationshipwhentestedondifferentincidentplanes.formaterialswithknownspecificpoint-groupsymmetry,theAccordingtothestructureshowninFigure3a,theARPRamanscatteringintensitycanbederivedbasedontheRamanspectrumexperimentiscarriedoutwiththewaterfall22−24classicalRamanselectionrule.Theh-BNusedinthisdiagramsofc-planeandm-planeateachpolarizationangleinworkbelongstotheD6hpointgroup(P63/mmcspacegroup).thelargewavenumberrangeobtained.ItcanbeclearlyseenItssingle-layerstructureissimilartothatofgraphene.ThreefromFigures3band3cthatwiththechangeofpolarizationinterphaseatomsinahexagonalcarbonringarereplacedbyBanglethereisonlyonesingleRamansignalinthec-planeandandN.Differentatomsbetweenlayerscombinedbyvanderm-planewithouttheinterferenceofothersignals.AtthesameWaalsforcesarestackedrelativetoeachotheralongthec-time,theRamanscatteringintensityofthem-planevarieswith3796https://doi.org/10.1021/acs.jpclett.1c00958J.Phys.Chem.Lett.2021,12,3795−3801

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.ARPRamanspectroscopyexperiment.(a)Basalplaneandcrossplaneteststructurediagram.(b),(c)Ramanspectrainthefullwavenumberrangeateachpolarizationanglewithin180°ofthem-planeandc-plane;(d)and(e)aretheRamanspectrumpseudocolorimagesinthesmallwavenumberrangecorrespondingto(b)and(c).(f),(g)m-planeandc-planeateachpolarizationangleofthespectrumobtainedafterLorentzfittingofthepolarizationscatteringintensity-angledatagraph.Thepointsinthefigureareforexperimentaldatapoints,andthecurveisaformulafittingcurve.thepolarizationangle,andthemaximumintensityisobviouslydifferentialpolarizabilityoftheE2gmodeinthexy-planegreaterthanthatofthec-plane.Afterfurtherprocessingthe(proportionaltoRamantensordm=1anddc=0.75,wheretheexperimentaldataintherangeof1100−1600cm−1,pseudo-subscriptrepresentsthetestplane)canbeobtainedbycolordiagramsoftheRamanspectrumasshowninFigures3dcombiningthefittingformulacalculatedbytheRamanandeareobtained,wherethestrongdependenceoftheRamanselectionruletheoryabove,whichisrelatedtothesmall30,31scatteringintensityontheanglecanbeclearlyrecognizedindeformationdisplacementofthevibrationmodeatom.thefigurenear1350cm−1.TheRamanscatteringintensityofAccordingtothediscussionofARPRamanspectroscopy,thethem-planedisappearscompletelyat0°,andthemaximumsignalwithhighscatteringefficiencycanbeobtainedat−90°valuesareat−90°and90°.However,theRamanscatteringand90°ofthecrossplane(ei⊥c).intensityofthec-planeisstableatavaluewithoutpolarization.Afterthefront-endscatteringconfigurationisdetermined,Inordertodescribethepolarizationdependenceofscatteringthescatteredlighthasgoodlinearpolarizationcharacteristicsintensitymoreintuitivelyandaccurately,thedataoftheE2g-andhighspectralefficiencyasthebasisforsubsequentmodeRamanscatteringintensity-polarizationangleat1365research.Thelasertuningofh-BNisachievedbychangingthecm−1ofthem-planeandc-planeareextractedandthenfittedsampletemperature,ofwhichtheexperimentalplatformisbyLorentzfittingoftheRamanspectrumateachangle,asshowninFigure4a.First,inaccordancewiththerequirementsshowninFigures3fandg.Meanwhile,thenormalizedoflasertuningfortheobtainedscatteredlightintensity,the3797https://doi.org/10.1021/acs.jpclett.1c00958J.Phys.Chem.Lett.2021,12,3795−3801

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.Lasertuningexperimentresults.(a)Schematicdiagramoftheexperimentalstructure.Theincidentlightpolarizationvectorisparalleltothescatteredlightpolarizationvectorandperpendiculartothec-axis.Thesampleisplacedinaconstanttemperatureplatform,andlowtemperatureconditionsareachievedthroughachannelbetweentheplatformandliquidnitrogen.Thetemperaturerangeisadjustedto80−420K.(b)Therelationshipbetweenpumplaserpowerandresponsesignalintensity.Theillustrationshowshowparallelandverticaltestconfigurationsinfluencetheback-endreceivedsignalintensity.(c)Therelationshipbetweenscatteringintensityandthelaserpowerdensityobtainedbyfurtherprocessingthedatain(b).Theabscissaisprocessedbyalogarithm.(d)Thespectralpositionoftheresponsesignalvaryingwithtemperaturewithachangeofapproximately0.08nmbetweenthelowesttemperatureandthehighestone.Intherangeof80−420K,thewavelength(e)andfwhm(f)ofscatteredlightobtainedatevery10°temperaturepointvarywithtemperature,andthecurvein(e)isobtainedbyfittingeq1.samplesweretestedwithdifferentpumplaserpowerswiththeoriginal522.82to522.73nm,andthelaseradjustmentlightpowerdensitydiagramofboththescatteredlightandaccuracyisaccurateto0.006nm/25K.Moreover,theaverageincidentlightobtained(Figure4b).Theillustrationshowsthefwhmoftheobtainedsignalisabout0.25nm,indicatingthatcomparisonoftheresponsesignalintensitywhenpolarizationthescatteredlightobtainedbytuningstillhasahighdegreeofvectoresatthereceivingendisparalleltob-axisandc-axis.Inmonochromaticity.Accordingtotemperature-dependentprinciple,thescatteringintensityofes∥c-axisiscompletelyzero.Thisverysmallsignalheremaybeanexperimentalerrorphononfrequencyshifttheory,thetuningmethodismainlycausedbytheincompleteleveloftestsurfaceorthebasedontheanharmoniceffectofphononsandthethermalincompleteparallelismofthescatteredlightwiththec-axis.32expansioneffectofsamples.ConsideringthehighthermalTherefore,thebestsignalappearswhenthescatteredlightisconductivityandlowthermalexpansioncoefficientofh-BN,paralleltotheb-axis.LorentzfittingisperformedonthewecanspeculatethatanharmoniccouplingmakesthemainexperimentaldatainFigure4b,andanintuitivecurveshowingcontribution.Normally,thefrequencyofthephononvibrationthechangeofsignalintensitywithpowerdensity(aftermodehasalinearrelationshipwithtemperature,thatis,ω(T)logarithmicprocessing)asshowninFigure4cisobtained.Itcanbeseenthatthepowerdensitythresholdoftheresponse=ω0+χT,whereω0isthephononfrequencyatzerosignalofh-BNis25.4W/cm2(Pth∼1%)whichislowerthantemperatureandχisthefirst-ordertemperaturecoefficientthatofsubsequenttuningexperiments.Inthetemperature33usuallywithanegativevalue.However,itisobviousthatthecontrolrangeof80−420K,thewavelengthpositionofthecurveisnotasimplelinearchangeinthewholetemperaturescatteredlightchangescontinuouslywiththeincreaseofrange.AccordingtoBalkanshi’stheoryofopticalphonondecaytemperature,asshowninFigure4d.Byfittingtheexperimentalphenomenonbasedontwophononsofequalenergyduetoresultsateachtemperature,howthescatteredlightwavelengthandfwhmvarywithtemperatureisobtained,asshowninnonharmoniclatticepotential,andconsideringthefirst-orderFigures4eandf.ItcanbefoundthatwiththedecreaseofTaylorundertheexpandedcondition,thefollowingformula34temperature,thescatteredlightwavelengthisreducedfromthecanbederived:3798https://doi.org/10.1021/acs.jpclett.1c00958J.Phys.Chem.Lett.2021,12,3795−3801

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterlooijj2yzzavoided,whichprovidesadditionalpossibilityforitsfutureooooω++Ajj1zz(TK<150)applicationtoon-chipintegratedopticalcircuits.oo0eℏ(/ω0B2)/kT−1ook{CombiningbothexistinglasertuningtechnologyandtheooolasertuningmethodsimplementedpreviouslyinvanderWaalsω()Tmω++A4AkBTT(oo0materials,thispaperchoosesh-BNwithawidebandgap,highooooℏω0thermalconductivity,andlowthermalexpansioncoefficientasoooo>ℏ150,(Kkω0B/2)/Ttheresearchobject.First,accordingtothedifferentsymmetryooon≪1)(1)structurecharacteristicsofthebasalplaneandcrossplaneofh-BN,thepolarizationangle(ei⊥c)withthebestscatteredlightAmongthem,Aistheanharmonicconstant,ℏthereducedefficiencyisselectedwithasingleE2gmodeusedasthePlanckconstant,andkBtheBoltzmannconstant.ThisformulaidentificationobjectcombinedwiththeclassicalRamancanbetterfitthesituationwhentheslopeoftheresponseselectionrule.Atthesametime,accordingtotherequirementsignalpeakpositionvaryingwithtemperatureisinconsistentofscatteringintensityforthelaserexcitationpowerthresholdduetothedifferenceinthenumberofphonondecaysat(Pth∼1%),thetemperature-dependentlasertuningisfinallyapproximately150K.AndaccordingtotheprincipleofRamanperformedonthebasisofhighlaserefficiency.Intherangeofspectroscopy,wecaneasilytransformphononfrequencyinto80−420K,theE2gmodeisusedasanenergyexchangetheresponsewavelengthofthescatteredlightmathematically.medium,andthewavelengthofscatteredlightisblue-shiftedThefittingcurveisshowninFigure4e,accordingtowhichitwiththeincreaseintemperature.Thecontinuouslasertuningcanbespeculatedthatifthetemperaturecontinuestorise,thewithatuningaccuracyof0.006nm/25Kisachieved,andthequalityofscatteredlightobtainedbythismethodismuchwavelengthoflasertuningcanbepredicted.higher.Inaddition,duetotheadvantagesofh-BN,thelocalInRamanspectroscopy,thephononmodefrequencyheatingphenomenoncausedbythepumplaserisnotobvious.correspondstotherealpartofthephonon’sownenergy,but33Thissimple,continuous,andstablelasertuningmethodthelinewidthrepresentstheimaginarypartofself-energy.providesaresearchideaforthedevelopmentofvanderWaalsTherefore,thechangeoffwhmwithtemperaturecanalsobelayeredmaterialsinthefieldofon-chipintegratedoptics.takenasanidentificationobjectoflasertuning.AsshowninFigure4f,whenthetemperatureincreases,thefwhmalso■increases,whichiscausedbythechangeoftheequilibriumEXPERIMENTALSECTIONpositionofatomsandtheinteractionforcebetweenatomsThesampleswerepurchasedcommercially.TheARPRamanunderregularlatticearrangement.ConsideringthattheerrorexperimentwasperformedwithaRenishawmicroconfocaloflinewidthismuchlargerthanthepeakpositionofthelaserRamanspectrometer,andthelaserwasprovidedbya488nmAr+gaslaser.Theexperimentaltestconfigurationisvibrationmode,itwillbemoreaccuratetoselectthepeakpositionofthephononmodeasthebasisforlasertuning.backscatteredparallelpolarization.WhentheincidentlaserisInaddition,forsampleswithlowthermalconductivitylikeincidentfromthesample’scrossplane(a-axis),theangleMoS2andWS2,theincreaseofincidentlaserpowerwillcausebetweenthepolarizationvectoreioftheincidentlightandc-ariseoflocaltemperatureofthesamplesurface,whichwillaxisisdefinedasθ,andthepolarizationangleincreasesfromleadtothesofteningoftheRamanmode;thiseffectissimilar−90°to90°duringthetest.Whentheincidentlaserisincidenttothelasertuningdiscussedabove.Ifbothexternalfromthebasalplaneofthesample(c-axis),theanglebetweendisturbancetemperaturecontrolandthelaserpowerhaveathepolarizationvectoreioftheincidentlightanda-axisisdefinedasω.Thepolarizationangleincreasesfrom0°to180°hugeimpactonthesampleduringthelasertuningprocess,thisduringthetest,andthesteplengthoftheARPRamanwillnotbeconducivetoaprecisecontrolofasinglevariable.experimentis10°.ThevariabletemperaturecouplingpartisTherefore,fortheabove-mentionedexcitationexperimentsbasedonanoriginalRamanspectrometerwithaconstantwithdifferentpumplaserpowerdensitiesforh-BN,theresultstemperaturetablewithaliquidnitrogenrefrigerationobtainedshowthatthemeasuredscatteredlightwavelengthmechanismadded,ofwhichthetemperaturecontrolrangeishardlychanges,asdisplayedinFigureS1,wherethestandard80−420Kwith10Kasatemperaturepointintheexperiment.deviationandmedianofthepeakpositionandfwhmare2Thelaserpowerdensityisprovidedbya2.5KW/cmlaser,illustrated,andthedataerrorisprovedverysmall.Thismaybeandtheadjustablepoweris0.1%,0.5%,1%,5%,10%,50%,andduetothegreatheatconductioneffectofh-BN,thatis,the100%.temperaturegeneratedbythepumplaserdiffusesrapidly,anditisnoteasytocauseariseoflocaltemperature.Atthesame■time,duetothesmallthermalexpansioncoefficientofh-BN,ASSOCIATEDCONTENTthetemperaturechangeproducedbythepumplaserhasan*sıSupportingInformationextremelyweakeffectonthephononvibrationmode,whichTheSupportingInformationisavailablefreeofchargeatwillfacilitatethetuningofasinglevariabletothelaser.https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00958.Basedonthediscussionabove,theabsorptionofpumplaserFigureS1(PDF)canbeeffectivelyavoidedforh-BNduetoitslargebandgap.Atthesametime,basedonthepolarizationcharacteristicsofthebasalplaneandcrossplane,thebestscatteringefficiency■AUTHORINFORMATIONorientationisselectedforlasertuning.Inaddition,withtheCorrespondingAuthorhighthermalconductivityandlowthermalexpansionWeiZheng−StateKeyLaboratoryofOptoelectroniccoefficientofh-BN,accurateandcontinuouslasertuningcanMaterialsandTechnologies,SchoolofMaterials,SunYat-senberealizedwithinthetemperaturerangeastheinfluenceofUniversity,Guangzhou510275,China;orcid.org/0000-pumplaserpowerandself-expansionontuningaccuracyis0003-4329-0469;Email:zhengw37@mail.sysu.edu.cn3799https://doi.org/10.1021/acs.jpclett.1c00958J.Phys.Chem.Lett.2021,12,3795−3801

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterAuthorsRamanspectraofsuspendedgraphene.Opt.LaserTechnol.2021,139,YingDing−StateKeyLaboratoryofOptoelectronicMaterials106960.andTechnologies,SchoolofMaterials,SunYat-sen(11)Zheng,W.;Lin,R.;Jia,L.;Huang,F.Vacuum-Ultraviolet-University,Guangzhou510275,ChinaOrientedvanderWaalsPhotovoltaics.ACSPhotonics2019,6,1869−YanmingZhu−StateKeyLaboratoryofOptoelectronic1875.(12)Zheng,W.;Lin,R.;Zhang,Z.;Huang,F.Vacuum-UltravioletMaterialsandTechnologies,SchoolofMaterials,SunYat-senPhotodetectioninFew-Layeredh-BN.ACSAppl.Mater.InterfacesUniversity,Guangzhou510275,China2018,10,27116−27123.MinggeJin−StateKeyLaboratoryofOptoelectronic(13)Su,J.;Liu,K.;Wang,F.;Jin,B.;Guo,Y.;Liu,G.;Li,H.;Zhai,MaterialsandTechnologies,SchoolofMaterials,SunYat-senT.VanderWaals2DTransitionMetalTellurides.Adv.Mater.University,Guangzhou510275,ChinaInterfaces2019,6,1900741.FengHuang−StateKeyLaboratoryofOptoelectronic(14)Lee,C.;Yan,H.;Brus,L.E.;Heinz,T.F.;Hone,J.;Ryu,S.MaterialsandTechnologies,SchoolofMaterials,SunYat-senAnomalousLatticeVibrationsofSingleandFew-LayerMoS2.ACSUniversity,Guangzhou510275,China;orcid.org/0000-Nano2010,4,2695−2700.0002-4623-2216(15)Chang,C.;Fan,X.;Lin,S.;Kuo,J.OrbitalanalysisofelectronicstructureandphonondispersioninMoS2,MoSe2,WS2,andWSe2Completecontactinformationisavailableat:monolayersunderstrain.Phys.Rev.B:Condens.MatterMater.Phys.https://pubs.acs.org/10.1021/acs.jpclett.1c009582013,88,1DOI:10.1103/PhysRevB.88.195420.(16)Zheng,W.;Li,F.;Li,G.;Liang,Y.;Ji,X.;Yang,F.;Zhang,Z.;NotesHuang,F.LaserTuninginvanderWaalsCrystals.ACSNano2018,Theauthorsdeclarenocompetingfinancialinterest.12,2001−2007.(17)Zheng,W.;Zhu,Y.;Li,F.;Huang,F.Ramanspectroscopy■ACKNOWLEDGMENTSregulationinvanderWaalscrystals.PhotonicsRes.2018,6,991−995.ThisworkwasfinanciallysupportedbytheNationalNatural(18)Yamanaka,A.;Okada,S.EnergeticsandElectronicStructureofh-BNNanoflakes.Sci.Rep.2016,6,30653.ScienceFoundationofChina(91833301,61427901,(19)Maruyama,M.;Okada,S.EnergeticsandElectronicStructure61604178).ofTriangularHexagonalBoronNitrideNanoflakes.Sci.Rep.2018,8,16657.■REFERENCES(20)Park,H.;Kim,T.K.;Cho,S.W.;Jang,H.S.;Lee,S.I.;Choi,S.(1)LaMonica,S.;Maiello,G.;Ferrari,A.;Masini,G.;Lazarouk,S.;Y.Large-scalesynthesisofuniformhexagonalboronnitridefilmsbyJaguiro,P.;Katsouba,S.Progressinthefieldofintegratedplasma-enhancedatomiclayerdeposition.Sci.Rep.2017,7,40091.optoelectronicsbasedonporoussilicon.ThinSolidFilms1997,(21)Autore,M.;Li,P.;Dolado,I.;Alfaro-Mozaz,F.J.;Esteban,R.;297,265−267.Atxabal,A.;Casanova,F.;Hueso,L.E.;Alonso-González,P.;(2)Alam,T.;Wienold,M.;Hubers,H.-W.MolecularspectroscopyAizpurua,J.;Nikitin,A.Y.;Vélez,S.;Hillenbrand,R.Boronnitridewithaterahertzquantum-cascadelaserbyillumination-inducednanoresonatorsforphonon-enhancedmolecularvibrationalspectros-frequencytuning.IEEE2018,2018,1.copyatthestrongcouplinglimit.Light:Sci.Appl.2018,7,17172−(3)Pospischil,A.;Humer,M.;Furchi,M.M.;Bachmann,D.;17172.Guider,R.;Fromherz,T.;Mueller,T.CMOS-compatiblegraphene(22)Zheng,W.;Zheng,R.S.;Wu,H.L.;Li,F.D.Stronglyphotodetectorcoveringallopticalcommunicationbands.Nat.anisotropicbehaviorofA1(TO)phononmodeinbulkAlN.J.AlloysPhotonics2013,7,892−896.Compd.2014,584,374−376.(4)Chryssou,C.E.Gain-equalizingfltersforwavelengthdivision(23)Zheng,W.;Zheng,R.;Huang,F.;Wu,H.;Li,F.RamantensormultiplexingopticalcommunicationsystemsacomparisonofnotchofAlNbulksinglecrystal.PhotonicsRes.2015,3,38−43.andlong-periodgratingfltersforintegratedoptoelectronics.Opt.(24)Jin,M.;Zheng,W.;Ding,Y.;Zhu,Y.;Wang,W.;Huang,F.Commun.2000,184,375−384.RamanTensorofWSe2viaAngle-ResolvedPolarizedRaman(5)Gambell,A.;Simakov,N.;Ganija,M.;Hemming,A.V.;Daniel,Spectroscopy.J.Phys.Chem.C2019,123,29337−29342.J.M.;Shardlow,P.C.;Clarkson,W.A.;Ward,J.;Veitch,P.J.;Munch,(25)Mei,H.;Zhong,Y.;He,D.;Du,X.;Li,C.;Cheng,N.Elastic,J.;Haub,J.;Mitchell,A.;Rubinsztein-Dunlop,H.Intra-cavityelectronicandopticalpropertiesofnew2Dand3Dboronnitrides.semiconductorlasertuningusingafrequencycompensatingSci.Rep.2020,10,1DOI:10.1038/s41598-020-64866-9.acousto-optictunablefilterpair.InProceedingsoftheAOSAustralian(26)Jin,M.;Zheng,W.;Ding,Y.;Zhu,Y.;Wang,W.;Huang,F.ConferenceonOpticalFibreTechnology(ACOFT)andAustralianRamanTensorofvanderWaalsMoSe2.J.Phys.Chem.Lett.2020,11,ConferenceonOptics,Lasers,andSpectroscopy(ACOLS);2019;Vol.4311−4316.11200,p1120027.(27)Ding,Y.;Zheng,W.;Zhu,Y.;Jin,M.;Lin,Z.;Zhu,R.;Huang,(6)Iurov,A.;Zhemchuzhna,L.;Gumbs,G.;Huang,D.ExploringF.RamanTensorofLayeredTd-WTe2.J.Phys.Chem.C2020,124,interactingFloquetstatesinblackphosphorus:Anisotropyandbandgaplasertuning.J.Appl.Phys.2017,122,124301−11.16596−16603.(7)Zhang,Y.;Li,J.;Hu,Y.;Zhang,H.;Qiu,C.;Zhang,C.;Wang,(28)Ding,Y.;Zheng,W.;Lin,Z.;Zhu,R.;Jin,M.;Zhu,Y.;Huang,X.;Liu,B.;Yang,Y.;Lv,X.TemperaturetunablelaserswithF.RamantensoroflayeredWS2.SCI.CHINAMater.2020,63,disorderedNd:ABC3O7crystals.Opt.LaserTechnol.2020,125,1848−1854.106018.(29)Ding,Y.;Zheng,W.;Jin,M.;Zhu,Y.;Zhu,R.;Lin,Z.;Huang,(8)Abdollahramezani,S.;Hemmatyar,O.;Taghinejad,H.;Krasnok,F.RamantensoroflayeredMoS2.Opt.Lett.2020,45,1313−1316.A.;Kiarashinejad,Y.;Zandehshahvar,M.;Alu,A.;Adibi,A.Tunablè(30)Zhu,Y.;Zheng,W.;Wang,W.;Zhu,S.;Cheng,L.;Li,L.;Lin,nanophotonicsenabledbychalcogenidephase-changematerials.Z.;Ding,Y.;Jin,M.;Huang,F.Ramantensoroflayeredblackarsenic.Nanophotonics2020,9,1189−1241.J.RamanSpectrosc.2020,51,1324−1330.(9)Balaswamy,V.;Ramachandran,S.;Supradeepa,V.R.High-(31)Zhu,Y.;Zheng,W.;Wang,W.;Zhu,S.;Li,L.;Cheng,L.;Jin,power,cascadedrandomRamanfiberlaserwithnearcompleteM.;Ding,Y.;Huang,F.Ramantensoroflayeredblackphosphorus.conversionoverwidewavelengthandpowertuning.Opt.ExpressPhotoniX2020,1,1−9.2019,27,9725−9732.(32)Balkanski,M.;Wallis,R.F.;Haro,E.Anharmoniceffectsin(10)Liu,Y.;Shi,Y.;Zhou,W.;Shi,W.;Dang,W.;Li,X.;Liang,B.lightscatteringduetoopticalphononsinsilicon.Phys.Rev.B:Thesplit-upofGbandand2Dbandintemperature-dependentCondens.MatterMater.Phys.1983,28,1928−1934.3800https://doi.org/10.1021/acs.jpclett.1c00958J.Phys.Chem.Lett.2021,12,3795−3801

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(33)Taube,A.;Judek,J.;Jastrzebski,C.;Duzynska,A.;Świtkowski,K.;Zdrojek,M.Temperature-DependentNonlinearPhononShiftsinaSupportedMoS2Monolayer.ACSAppl.Mater.Interfaces2014,6,8959−8963.(34)Su,L.;Zhang,Y.;Yu,Y.;Cao,L.Dependenceofcouplingofquasi2DMoS2withsubstratesonsubstratetypes,probedbytemperaturedependentRamanscattering.Nanoscale2014,6,4920−4927.3801https://doi.org/10.1021/acs.jpclett.1c00958J.Phys.Chem.Lett.2021,12,3795−3801

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭